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Abstract

Real-world applications of planning techniques often deal
with dynamic and noisy environments, where sensor read-
ings are often inaccurate, and the world’s states can evolve in
unexpected ways. This is particularly challenging for hybrid
discrete-continuous planning approaches, where processes
and events can be strongly affected by even slightly differ-
ent initial conditions of the world, and planning tasks are no-
toriously difficult to cope with. In this paper, we introduce
the Initial Condition Retrieving (ICR) problem to foster hy-
brid planning in real-world applications. Given a knowledge
model of a planning task and a trace, solving the ICR problem
allows identifying the space of all the initial conditions from
which the provided plan is guaranteed to reach a goal state.
We define three tasks: (i) retrieving any valid initial condi-
tion, (ii) fixing only some desired initial values and retriev-
ing a complete initial condition that fills in the unassigned
values, or (iii) retrieving the closest achievable initial con-
dition to a fully specified one from which the goal cannot
be reached. Experiments on well-known hybrid planning do-
mains demonstrate the efficacy of our approach in solving
such tasks. Moreover, given that our approach can be applied
to numeric planning without any change, we extend our anal-
ysis to numeric domains, where we obtain positive results.

Introduction
The nature of real-world applications usually requires the
ability to reason in hybrid discrete/continuous changes of
numeric variables. In automated planning, this necessity led
to the design of hybrid planning, expressible with PDDL+
(Fox and Long 2006), that introduces the notions of pro-
cesses and events to represent continuous and instanta-
neous changes on numeric variables, and has already proved
very effective in solving complex real-world problems such
as Traffic Control (Vallati et al. 2016), Train Dispatching
(Cardellini et al. 2021), Unmanned Aerial Vehicle Control
(Kiam et al. 2020) and Pharmacokinetic Optimization (Al-
aboud and Coles 2019). Hybrid planning tasks are noto-
riously difficult to cope with, due to the intrinsic difficul-
ties of reasoning with numeric variables (Helmert 2002) and
time in an intertwined way. The challenges of hybrid plan-
ning are also exacerbated when it comes to the validation
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of generated plans and verification of initial state condi-
tions (Percassi, Scala, and Vallati 2023b; Scala, McCluskey,
and Vallati 2022). A well-established approach to reasoning
about hybrid planning tasks is through discretisation (Penna,
Magazzeni, and Mercorio 2012; Percassi, Scala, and Val-
lati 2023a; Cardellini et al. 2024), which allows breaking
down complexity by assuming the time is discrete, and so
are the actual numeric changes. This enables the reuse of
well-established general search techniques based on forward
state-based exploration to address hybrid planning tasks; it
is indeed widely exploited by existing domain-independent
planning engines such as DINO (Piotrowski et al. 2016),
UPMURPHI (Penna, Magazzeni, and Mercorio 2012) and
ENHSP (Scala et al. 2016).

In real-world applications, we could often find ourselves
in the following situation: we observe a current state sG that
satisfies a goal condition G, and we can inspect a trace of
logs T , i.e., the complete description of how the agent acted,
and the system evolved until sG. We ask ourselves what
initial conditions could have originated T and from which
we could reach sG or any other goal state. This approach
is helpful in a range of domains, for instance in a cyber-
security framework (Hoffmann 2015; Parkinson, Khan, and
Chrpa 2020) where we are keen to discover the possible ini-
tial states from which an attack T reaches an undesired set
of states G, to patch these initial states and protect the sys-
tem from the attack. Here, we dub this problem the Initial
Condition Retrieving problem. While significant work has
been dedicated to plan fixing (Percassi, Scala, and Vallati
2023b), state repairing (Bezrucav et al. 2022), domain fix-
ing (Lin, Grastien, and Bercher 2023), and goal recognition
(Pereira, Oren, and Meneguzzi 2020; Chiari et al. 2023),
there is a lack of work in addressing the repair of the ini-
tial condition (Göbelbecker et al. 2010; Herzig et al. 2014),
and only propositional planning has been considered so far.
In the context of hybrid automata (Henzinger et al. 1998;
Henzinger and Kopke 1999) (from which hybrid planning
takes inspiration, see Bogomolov et al. 2015), the concept
of weakest precondition set (Boreale 2020) aims at finding
the whole possible initial space given any hybrid automata
(i.e., for any possible hybrid planning task), which is unde-
cidable even in the simplest setting. This differs from our
focus, which is on identifying the initial space of a hybrid
planning task given a finite and valid trace.



In this paper, we formally define the Initial Condition Re-
trieving (ICR) problem. To the best of our knowledge, this
is the first work on the retrieval and repair of initial condi-
tions in hybrid planning. Solving the ICR problem requires
identifying an Initial Condition Space (ICS) from which, by
emulating a trace from any initial condition inside it, we are
guaranteed to reach a goal state. This paper makes several
key contributions. First, we formally define how to construct
the ICS, focusing on discretised hybrid planning. Second, we
introduce an efficient approach for addressing the ICR prob-
lem, translating it into a mathematical programming prob-
lem. Third, we empirically demonstrate its usefulness in a
range of benchmarks to solve different scenarios like (i) re-
trieving any initial condition inside the ICS, (ii) fixing only
some desired initial values and retrieving the initial condi-
tion in the ICS which fills the unassigned values, and (iii)
specifying a full initial condition from which we are unable
to reach the goal and retrieve its closest “repaired” coun-
terpart in the ICS. Fourth, we show that the proposed ap-
proach can be seamlessly applied to numeric planning tasks.
In the experimental analysis, we will benchmark these three
scenarios on well-known domains in the literature of hybrid
planning and on problems of the latest IPC track on numeric
planning (Taitler et al. 2024), obtaining positive results on a
wide range of planning domains.

Background
Discrete Hybrid Planning. Let δ ∈ Q≥0 be a discretisa-
tion step. A Discrete Hybrid ( DH) planning task, express-
ible with PDDL+, is a tuple Πδ = ⟨VB, VR, I, G,A,E, Pδ⟩.
VB and VR are finite sets of propositional and numeric vari-
ables with domains in B = {⊤,⊥} and R, respectively.
A state s is a total assignment to the variables in VB and
VR to their respective domains. The initial condition I is a
state. A propositional condition is an expression of the form
v = ⊤ or v = ⊥ with v ∈ VB. A numeric expression
φ is a formula over the variables in VR and coefficients in
Q, in which variables can appear summed, subtracted, mul-
tiplied and divided. A numeric condition is an expression
of the form φ ⊵ 0, with φ being a numeric expression and
⊵ ∈ {=, >,≥}. The goal G is a set of propositional and nu-
meric conditions. The sets of actions A, events E and pro-
cesses Pδ are sets of happenings. A happening h is a tuple of
the form ⟨pre(h), eff(h)⟩ where the precondition pre(h) is
a set of propositional and numeric conditions and the effect
eff(h) is a set of propositional and numeric assignments. A
propositional assignment is an expression of either v := ⊤
or v := ⊥ with v ∈ VB. A numeric assignment is an ex-
pression of the form x := φ with x ∈ VR and φ a numeric
expression. Even if, syntactically, the actions A, the events
E and the processes Pδ are all sets of happenings, seman-
tically they are quite different. Actions prescribe may tran-
sitions, meaning that, even if they are applicable, the agent
could decide to apply them. Events and processes instead
prescribe must transitions, meaning that, if their precondi-
tions are satisfied, they must immediately affect the state.
Events model one-time change in the propositional and nu-
meric variables, instead, processes model a flow of change in
the numeric variables. For this reason, we will assume in the

following that processes have, in their effects, only numeric
effects in the form x := x + φ1 · δ, with φ1 is a numeric
expression denoting the discrete change of x.

Let s be a state, v be a variable in VB ∪ VR and φ a nu-
meric expression, we denote with s(v) the value assumed
by the variable v in the state s, and with s(φ) the value ob-
tained by substituting in φ all the variables x ∈ VR with
s(x). A set of propositional or numerical conditions Ψ is
satisfied in a state s, written as s |= Ψ, if for each v = ⊤
or w = ⊥ in Ψ, we have s(v) = ⊤ and s(w) = ⊥ and for
each φ ⊵ 0 in Ψ, we have s(φ) ⊵ 0. A happening h is ap-
plicable in a state s if s |= pre(h). Applying a happening h
to the state s results in the state s′ = γ(h, s), in which (i) if
v := e ∈ eff(h), with e ∈ VB, s′(v) = e; (ii) if x := φ ∈
eff(h), with φ being a numeric expression, s′(v) = s(φ);
and (iii) s′(v) = s(v) otherwise. Applying a sequence of
happenings ⟨h1; . . . ;hk⟩ to a state s results in the state
γ(⟨h1; . . . ;hk⟩, s) = γ(hk, γ(hk−1, γ(. . . , γ(h1, s)))).

We indicate with E(s) ⊆ E the set of events which are
triggered at a state s, i.e., E(s) = {e ∈ E | s |= pre(e)}.
In this paper, we follow the semantics of events specified
in (Fox, Howey, and Long 2005) for guaranteeing the deter-
minism of events. In particular, we impose that (i) each pair
of events inE(s) are not in mutual exclusion with each other
(i.e., applying them in any order doesn’t change the out-
come), and (ii) after applying all the events in E(s) it is no
longer possible to apply any event inE(s) again, thus avoid-
ing infinite repetition of events. We denote with γ(E(s), s)
the result of applying all the events in E(s) in an arbitrary
sequence. Similarly to E(s), we define Pδ(s) as the set of
processes applicable in the state s. For this reason, given a
state s, with applicable processes Pδ(s), we can compute
the state s′ resulting from the application of all the applica-
ble processes as s′ = γ(Pδ(s), s) such that s′(v) = s(v)
for each v ∈ VB (since propositional variables can’t contin-
uously change) and

s′(x) = s(x) +
∑

φ∈Φδ(x,s)

s(φ) for each x ∈ VR, (1)

where Φδ(x, s) = {φ1 · δ | x := x + φ1 · δ ∈ eff(p), p ∈
Pδ(s)} is the set of discrete changes to x applicable from s.

DH Plan Validity. Let δ be a discretisation step and Πδ

a DH planning task. A DH plan π of Πδ is a sequence of
length n of timestamped actions where actionπ(k) ∈ A is
the k-th action of the plan which is applied at the timestamp
timeπ(k) ∈ {i · δ | i ∈ N}, with k ∈ {0, . . . , n − 1}. The
plan is coupled with a valueMπ ∈ Q≥0 which represents the
make span of the plan, i.e., when the last action or event trig-
gers or process terminates, in general Mπ ≥ timeπ(n−1).
Since the plan only contains actions, to validate it, we need
to emulate the behaviour of events and processes to under-
stand how the state of variables changed over time. For this
reason, we project the plan onto a history, where time is dis-
cretised into intervals of size δ. A history H = ⟨S1; . . . ;Sm⟩
is an ordered list of situations. A situation Si is a tuple
⟨ti, ci, si, ai⟩ where ti ∈ Q≥0 is the time of Si, ci ∈ N is
a counter, keeping track of the number of actions projected
until Si, si is the state of the situation Si, and ai ∈ A ∪ {ϵ}



is the action which is applied at Si, with ϵ be a no-op action
with empty preconditions and effects. The following rules
specify how to construct in a forward manner the plan pro-
jection for Πδ:

A0 S1 = ⟨t1, c1, s1, a1⟩ with t1 = 0, c1 = 0 and s1 = I ,

and for each two contiguous situations Si = ⟨ti, ci, si, ai⟩
and Si+1 = ⟨ti+1, ci+1, si+1, ai+1⟩ with i ∈ {1, . . . ,m−1}
A1 ifE(si) ̸= ∅ then ai = ϵ, si+1 = γ(E(si), si), ci+1 = ci

and ti+1 = ti,
A2 if E(si) = ∅, and timeπ(ci) = ti then ai = actionπ(ci),

si+1 = γ(ai, si), ti+1 = ti and ci+1 = ci + 1,
A3 if E(si) = ∅, timeπ(ci) ̸= ti and ti < Mπ then ai = ϵ,

si+1 = γ(Pδ(si), si), ti+1 = ti + δ and ci+1 = ci.

Rule A0 describes the initial situation, in which no action is
yet projected, and the state is equal to the initial condition.
After the initialisation, one of three things can happen: either
events trigger, an action is applied, or processes are applied,
bringing the time forward. Rule A1 states that if events can
be triggered, they must be triggered, keeping the time still.
If applying the events causes other events to become appli-
cable, A1 is applied at all the following situations until the
set is empty. RuleA2 states that if no event is applicable and
the next action in the plan (based on the counter ci) happens
at the current time ti, we apply it. If, after applying the ac-
tion, other events are applicable, rule A1 is invoked until no
event can trigger. Finally, when all events have triggered and
all the actions at that time (if any) have been applied, we can
apply the processes with rule A3, moving the time forward
by δ.

Let π be a plan of a DH planning task Πδ , and let Hπ
δ =

⟨S1; . . . ;Sm⟩ be a projection of π with discretisation step δ.
We say that π is valid w.r.t. the discretisation step δ iff (i) for
each Si = ⟨ti, ci, si, ai⟩ with i ∈ {1, . . . ,m − 1} we have
si |= pre(ai), and (ii) in Sm = ⟨tm, cm, sm, am⟩ we have
sm |= G.

A log of a projection is a pair ⟨t,H⟩ where t is the times-
tamp associated with the happeningH ∈ A∪P(P )∪P(E),
where P(·) is the power set of its argument, i.e., a sin-
gle action, a set of processes or a set of events. We now
see how a DH projection of a plan induces a trace of logs.
Let Hπ

δ = ⟨S1; . . . ;Sm⟩ the projection of a plan π for a
DH planning task Πδ . The trace log induced by Hπ

δ is de-
fined as the sequence of logs ⟨L1; . . . ;Lm⟩ where, for each
Si = ⟨ti, ci, si, ai⟩ we have that Li = ⟨ti, Hi⟩, where:

Hi =


{ai} if ai ̸= ϵ

E(si) if ai = ϵ and E(s) ̸= ∅
Pδ(si) if ai = ϵ and E(s) = ∅.

Numeric Planning. Numeric planning can be viewed as a
special case of a hybrid planning task Πδ , in which time is
static (δ = 0) and both events and processes are absent, i.e.,
Π0 = ⟨VB, VR, I, G,A,E = ∅, Pδ = ∅⟩. A numeric plan
π of Π0 is a special case of a hybrid plan in which all the
timeπ(k) = 0, for k ∈ {0, . . . , n− 1}. The concept of trace
log, which coincides with π, can thus be straightforwardly
applied to numeric planning tasks.

Example 1 (Running Example). A car needs to move in a
straight line from its initial position dinit to a desired goal
distance between dmin and dmax. Initially, the agent can
only execute the action turnOn to start the engine. At any
point, it can gas or brake, which increases or decreases
its acceleration a by one, until reaching the maximum ac-
celeration A or maximum deceleration D. Two processes,
speed and move, oversee updating the velocity v based on
the acceleration a and the distance d based on the veloc-
ity v. The car features stop-start technology, which triggers
the engine to switch off when the velocity is near 0. Let us
assume dinit = 0, dmin = 2, dmax = 4, A = 1, and
D = −1. The DH planning task ΠLC

δ for the Linear Car
domain is composed of:1

VB ={on}, VR = {d, v, a, A,D},
I ={d := 0, v := 0, a := 0, on := ⊥, A := 1, D := −1},
G ={d ≥ 2, d ≤ 4, on = ⊥}, A = {turnOn, gas, brake},
E ={idle}, Pδ = {move, speed},

turnOn =⟨{on = ⊥}, {on := ⊤}⟩,
gas =⟨{on = ⊤, a < A}, {a := a+ 1}⟩,

brake =⟨{on = ⊤, a > D}, {a := a− 1}⟩,
idle =⟨{v < 0.1, a < 0.1, on = ⊤}, {on := ⊥}⟩,

speed =⟨{on = ⊤}, {v := v + a · δ}⟩,
move =⟨{on = ⊤}, {d := d+ v · δ}⟩.

A valid plan for ΠLC
δ with δ = 1 and Mπ = 4 is, among

others,

π = ⟨⟨0, turnOn⟩; ⟨0, gas⟩; ⟨1, brake⟩; ⟨3, brake⟩⟩.

The trace log T π
δ produced by the history Hπ

δ consists of

T π
δ =⟨⟨0, {turnOn}⟩; ⟨0, {gas}⟩; ⟨0, {move, speed}⟩;

⟨1, {brake}⟩; ⟨1, {move, speed}⟩; ⟨2, {move, speed}⟩;
⟨3, {brake}⟩; ⟨3, {move, speed}⟩; ⟨4, {idle}⟩⟩ (2)

Initial Condition Retrieving Problem
We now examine the scenario where a trace log, generated
by a plan, is observed. We aim to deduce the initial state that
best explains this trace log. Depending on the applied con-
text, we may lack complete or correct information about the
initial state, so we aim to reconstruct the most plausible state
based on the observed log. To do this, we define the Initial
Condition Space (ICS) as the set of candidate initial states
capable of generating the observed trace log, from which the
most preferred state is selected according to specific criteria.

Let V be a generic set of variables with a specific domain.
We denote as Asgn(V ) the set of all possible assignments to
the variables of V within their respective domains.

Definition 1 (Initial Condition Space). Let Tδ be a trace log
for a DH planning task Πδ , having variables VB and VR. The
Initial Condition Space (ICS) for Tδ and Πδ is defined as:

ICS(Tδ,Πδ) = {I ∈ Asgn(VB ∪ VR) | ACCEPTED(Πδ, Tδ, I)}.
1To simplify notation, we write, for example, d ≤ 4 instead of

−d+ 4 ≥ 0



The ICS for a trace log Tδ is defined as the set of all states
that, when used as initial states, allow for the trace to be
correctly emulated and the goal to be achieved.

To determine acceptance, we simulate the trace log and
check for valid plan execution by sequentially applying the
recorded happenings in Tδ to a state, thus mimicking the
system’s evolution over time. This process uses the tran-
sition function γ, which also constructs plan projections.
Emulating a log entry L = ⟨t,H⟩ from state s produces
a new state s′ defined as s′ = γ(L, s) = γ(H, s). Emu-
lating the entire trace log T = ⟨L1, . . . ,Lm⟩ from initial
state s results in a final state s′ given by s′ = γ(T , s) =
γ(Lm, γ(. . . , γ(L1, s))).

A trace log Tδ for Πδ emulated from I is accepted, de-
noted ACCEPTED(Πδ, Tδ, s), if the preconditions for the
logged actions, events, and processes are satisfied during
emulation, and the goal is achieved in the final state.

We observe that, as the ICS is defined, it may include ini-
tial states that are not relevant, such as assigning numeric
variables to values that would be impractical in real-world
scenarios (e.g., a temperature below 0◦C or above 100◦C).
To address this, we assume that each numeric variable v ∈
VR has a domain Dv = [v, v], where v ∈ R ∪ {−∞} and
v ∈ R ∪ {+∞}, with v ≤ v. This defines the lower and up-
per bounds for the variable v. We denote the set of domains
as D = {Dv | v ∈ VR}. This imposition of bounds aligns
with recent studies in bounded numeric planning, which ex-
plore restrictions on numeric variables (Gigante and Scala
2023; Kuroiwa, Shleyfman, and Beck 2023). To incorporate
this domain knowledge, we generalise Definition 1 to the
bounded initial condition space ICS(Tδ,Πδ,D), where we
also require that the accepted states have numeric variables
constrained within their specified bounds. Note that the def-
inition provided so far is a special case of ICS(Tδ,Πδ,D)
where we have, for each v ∈ VR, Dv = [−∞,+∞].

With the ICS defined, the next step is to formalise the Ini-
tial Condition Retrieving Problem (ICR): identifying the ini-
tial state within the ICS closest to a given partial or incorrect
initial state and repairing it as needed.

Let ŝ be a partial assignment of the variables in VB and
VR to their respective domains, denoting with ŝ(v) = ∅ if
the assignment to the variable v ∈ VB∪VR is undefined, and
let d(a, b) be a distance function that measures the difference
between two values. The ICR problem seeks to find an initial
state IR within the ICS that minimises the distance from s.
Definition 2 (Initial Condition Retrieving Problem). Let Tδ
be a trace log for a DH planning task Πδ , with an initial
(possibly partial) state Î and numeric variables bounded in
D. The Initial Condition Retrieving Problem (ICR) seeks to
identify an initial state IR such that:

IR = argmin
I∈ICS(Tδ,Πδ,D)

∑
v:Î(v)̸=∅

d(I(v), Î(v)). (3)

This formulation allows us to address three scenarios: (i)
retrieving an arbitrary state from the ICS when all variables
are undefined; (ii) filling the undefined variables while re-
specting partial assignments; (iii) repairing an initial state
that fails to validate the trace log by finding the closest valid

state. (Note that the undefined variables are excluded from
the computation, and any assignment is valid as long as it
satisfies the condition of belonging to a state within the ICS).

Various custom metrics can define the measure d(a, b). In
this work, we utilise the following specific distance:

d(a, b) =


(a− b)2 if a, b ∈ R,
0 if a, b ∈ {⊤,⊥} and a = b,

∞ if a, b ∈ {⊤,⊥} and a ̸= b.

(4)

This measure ensures that the propositional partial assign-
ments must be respected exactly. In this work, we chose this
distance since we mostly focus on the retrieval of the nu-
meric component. Other distances can be defined depending
on the problem at hand.

To ensure that the ICS is well-defined, we assume it forms
a closed set. We will discuss how to guarantee this property
in a later section.

Constructing the Initial Condition Space
This section outlines a methodology for constructing a set
of numeric constraints, expressed as numeric conditions, de-
signed to capture all traces associated with the accepted runs
of a trace log for a DH planning task. To do so, we introduce
a constraint to ensure the goal is achieved, a constraint for
each happening that guarantees both preconditions and ef-
fects are satisfied, and, possibly, constraints for enforcing the
bounding of the numeric variables. This approach parallels
planning as SAT (Kautz and Selman 1992; Rintanen 2012),
drawing on encoding the planning task as a set of logical
constraints. Further, it resembles the methodology proposed
by Cashmore, Magazzeni, and Zehtabi (2020) for PDDL+
planning as SMT, but differently tailored for our purposes.

We start by defining the variables involved in the con-
straint set definition. Let Tδ = ⟨L1; . . . ;Lm⟩ be a trace
log of length m for a DH planning task having variables
V = VB ∪ VR. We define the set of numeric variables as

Ξ =

m⋃
i=0

Ξi, with Ξi = {ξvi | v ∈ VB ∪ VR}.

Each subset Ξi represents the numeric encoding of the vari-
ables V after applying the i-th log Li in Tδ , where Ξ0 corre-
sponds to the initial state. For a numeric expression φ over
VR, we denote Ξi[φ] as the expression obtained by replacing
each v ∈ VR in φ with its corresponding variable ξvi in Ξi. A
condition state σ is a total assignment of values to the vari-
ables in Ξ, mapping them to R. Given a condition state σ, a
variable ξvi ∈ Ξ, and a numeric expression ψ over Ξ, we use
σ(ξvi ) and σ(ψ) with a semantics consistent with the one
provided for V . Since the variables V and their copies Ξi

have different domains, we define a mapping from condition
states in Asgn(Ξi) to states in Asgn(V ). Given a condition
state σ, this mapping is denoted by µi(σ). Specifically, for
{ξvi | v ∈ VB}, positive values map to ⊤, and non-positive
values map to ⊥. Variables {ξvi | v ∈ VR} map directly to
their assigned values.

The variables Ξ can be involved in the definition of nu-
meric constraints of the form ψ⊵0. Let C(Ξ) be a set of such



constraints. We say that a condition state σ models C(Ξ), de-
noted σ |= C(Ξ), if for every constraint ψ ⊵ 0 ∈ C(Ξ), the
expression σ(ψ)⊵ 0 holds. The mapping set of a constraint
set C(Ξ) is defined as:

Mi(C(Ξ)) = {µi(σ) | σ ∈ Asgn(Ξ), σ |= C(Ξ)}.
In essence, Mi(C(Ξ)) contains the states obtained by map-
ping all condition states σ that satisfy C(Ξ), taking into ac-
count the subset Ξi of Ξ referring to the i-th happening.

With the formalism established, given Tδ , Πδ , and D, our
objective is to construct a set of numeric constraints, denoted
as I(Tδ,Πδ,D) (initial condition constraint set), such that
each model corresponds to an accepted run of the trace. This
implies that for each condition state σ |= I(Tδ,Πδ,D), the
value assumed by Ξ0 of σ corresponds to a state belonging
to ICS(Tδ,Πδ,D). Formally, we want to establish the fol-
lowing connection:

ICS(Tδ,Πδ,D) = M0(I(Tδ,Πδ,D)). (5)

In the following, we present the formal definitions of the
constraints that will be conjoined in the initial condition con-
straint set, modelling the goal state description, precondi-
tions, and effects of the happenings in the trace, as well as
any specified bounds.

Goal Constraint Set Let G be the goal of a DH planning
task. Let Ξm ⊆ Ξ be the variables referring to the last hap-
pening of the trace. We define the goal constraint set of G as
G(Ξm, G) = GB ∪GR, where

GB = {ξvm = ϱ(e) | v = e ∈ G, v ∈ VB}

GR = {Ξm[φ]⊵ 0 | φ⊵ 0 ∈ G},
and ϱ(e) = 1 when e = ⊤, −1 otherwise.

The following lemma establishes the connection between
the satisfaction of a goal G by a state sm and its inclusion in
the corresponding goal constraint setMm(G(Ξm, G)), mod-
ulo the mapping of variables.
Lemma 1. Let G be a goal, sm a state, and G(Ξm, G) the
goal constraint set of G defined over Ξm. Then:

sm |= G ⇐⇒ sm ∈ Mm(G(Ξm, G)).

Proof Sketch. (⇒) To prove the claim, we construct a condi-
tion state σ based on sm such that σ |= G(Ξm, G). First, for
each v ∈ VB: if v = e ∈ G, sm(v) = e since sm |= G; ad-
ditionally, by the definition of G(Ξm, G), ξvm = ϱ(e) ∈ GB.
Thus, we define σ(ξvm) = ϱ(s(v)), which ensures that
σ |= GB. For the goal numeric conditions, consider each
φ ⊵ 0 ∈ G: since sm |= G, sm(φ) ⊵ 0; by definition of
G(Ξm, G), we also have Ξm[φ] ⊵ 0 ∈ GR. Since φ and
Ξm[φ] are the same formula but with different variables,
setting σ(ξvm) = sm(v) for each v in φ guarantees that
σ |= GR. All variables not involved in G can take any value
and we set σ(ξvm) = ϱ(s(v)) if v ∈ VB, and σ(ξvm) = s(v)
otherwise. Any variables Ξi with i < m can be assigned
freely, as they do not appear in G(Ξm, G). Combining these,
we conclude that σ |= G(Ξm, G). By construction of σ, it is
clear that sm = µm(σ), proving the claim.

(⇐) The reverse direction mirrors the previous proof
with slight adjustments: we define a condition state σ |=
G(Ξm, G) and map it through Ξm, showing that the result-
ing state meets the goal.

To define the goal constraint set, we use variables Ξm to
index the m-th subset of Ξ associated with the final state.
For constraints on happenings, we use Ξi−1∪Ξi ⊆ Ξ, where
Ξi−1 and Ξi represent the state before and after applying the
happening h, respectively.

Happening Constraint Set Let h be the i-th happening
logged in a trace log and Ξi−1 ∪ Ξi ⊆ Ξ. We define the
happening constraint set of h as

R(Ξi−1, h,Ξi) = hB
pre ∪ hR

pre ∪ hB
eff ∪ hR

eff ∪ hR
frame, where

hB
pre = {ξvi−1 = ϱ(e) | v = e ∈ pre(h), v ∈ VB}

hR
pre = {Ξi−1[φ]⊵ 0 | φ⊵ 0 ∈ pre(h)}

hB
eff = {ξvi = ϱ(e) | v := e ∈ eff(h), v ∈ VB}

hR
eff = {ξvi = Ξi−1[φ] | x := φ ∈ eff(h), v ∈ VR}

hR
frame = {ξvi = ξvi−1 | v ∈ VB ∪ VR s.t. v := e ̸∈ eff(h)}.

Intuitively, we are expressing how the happening h affects
the numeric variables Ξi−1 and Ξi by specifying the neces-
sary conditions for h to occur (hBpre ∪ hRpre) and its resulting
effects (hBeff ∪ hReff ), while also ensuring that any variables
not directly affected by h remain unchanged (hRframe).

The previous definition only handles the case where we
are constructing a constraint set for a single happening h ∈
A. However, processes and events affect the state in parallel
(see the A1 and A3 rules for the plan projection). Then, to
represent them as a constraint set, we introduce a fictitious
happening to address situations where h is a subset of either
E or P .

Let s be a state and E(s) ⊆ E be the mutually exclusive
applicable events in s. Since we know they are mutually ex-
clusive, we create the fictitious happening

squash(E(s)) =
〈 ⋃
h∈E(s)

pre(h),
⋃

h∈E(s)

eff(h)
〉
.

We can then construct the happening constraint set of E(s)
as R(Ξi−1, squash(E(s)),Ξi).

Let Pδ(s) ⊆ P be the subset of processes active in a state
s, i.e., all those processes whose preconditions are satisfied
in s. Similarly to E(s), we can create the fictitious happen-
ing

squash(Pδ(s)) =
〈 ⋃
h∈Pδ(s)

pre(h), change
(
Pδ(s)

)〉
,

where change(Pδ(s)) is, in accordance with Equation (1),
the set of numeric effects for each v ∈ VR

v := v +
∑

φ∈Φδ(v,s)

φ.

We can then compute the happening constraint set for Pδ(s)
as R(Ξi−1, squash(Pδ(s)),Ξi).

The following lemma shows how two states, si−1 and si,
are linked by a happening h if and only if both states belong
to models satisfying Ri, modulo the mapping of variables.
Lemma 2. Let h be a happening, si−1 and si two states and
Ri = R(Ξi−1, h,Ξi) be the happening transition constraint
of h. Then, si−1 |= pre(h) ∧ si = γ(h, si−1) ⇔ si−1 ∈
Mi−1(Ri) ∧ si ∈Mi(Ri).



Proof Sketch. (⇒) To prove this, we construct a condition
state σ based on si−1 and si that satisfies Ri. Regarding the
precondition, since pre(h) is a set of conditions, like G in
Lemma 1, we follow the same methodology: for each vari-
able v we set σ(ξvi−1) = ϱ(si−1(v)) if v ∈ VB, σ(ξvi−1) =

si−1(v) otherwise. This ensures σ |= hBpre∪hRpre. Regarding
the effects, for each v ∈ VB, if v := e ∈ eff(h), si(v) = e
by definition of γ, and ξvi = ϱ(e) ∈ hBeff by definition of Ri.
Thus, we set σ(ξvi ) = ϱ(si(v)), ensuring σ |= hBeff . For each
numeric effect v := φ ∈ eff(h), we have si(v) = si−1(φ)
by definition of γ, and ξvi = Ξi−1[φ] ∈ hReff by definition
of Ri. Therefore, for each v ∈ VR affected by eff(h), we
set σ(ξvi ) = si−1(φ), ensuring σ |= hReff . For each variable
v which is not affected by h, si(v) = si−1(v) by definition
of γ, and to ensure σ |= hRframe, we set σ(ξvi ) = σ(ξvi−1).
Any variables in Ξj with j ̸= i − 1 and j ̸= i can be as-
signed freely, as they do not appear in Ri. Combining these,
we conclude that σ |= Ri. By construction of σ, it is clear
that si−1 = µi−1(σ) and si = µi(σ), proving the claim.

(⇐) The reverse direction follows by mirroring the previ-
ous proof with slight adjustments: we construct a condition
state σ |= Ri from its definition. Then, mapping the subset
of variables Ξi−1 and Ξi onto their respective counterparts,
we show that the resulting states si−1 and si necessarily sat-
isfy the preconditions and effects of the happening h.

Bound Constraint Set Let VR be the set of numeric vari-
ables of DH planning tasks bounded in D. The bound con-
straint set for VR is defined as

B(Ξ,D) = {ξv0 ≥ v, ξv0 ≤ v | Dv = [v, v] ∈ D}.
Once we have established the constraint sets for represent-

ing the goal condition, happenings of the trace log, and the
possible bounds, we have all the necessary components to
construct the initial condition constraint set as a conjunction
of these elements.
Definition 3 (Initial Condition Constraint Set). Let Tδ =
⟨T1; . . . ; Tm⟩ be a trace log for a DH planning task Πδ hav-
ing goal G and numeric variables bounded in D. We define
the initial condition constraint set as

I(Tδ,Πδ,D) = B(Ξ,D) ∪
m⋃
i=1

R(Ξi−1, Hi,Ξi) ∪ G(Ξm, G).

We now prove that I(Tδ,Πδ,D) encloses all and only the
initial conditions from which, emulating a trace log, we in-
duce an accepted run, proving Equation (5).
Theorem 1 (Correctness and completeness). Let Tδ be a
trace log of a DH planning task Πδ having goal G and nu-
meric variables bounded in D. Then:

I ∈ ICS(Tδ,Πδ,D) ⇐⇒ I ∈ M0(I(Tδ,Πδ,D)). (6)

Proof. We discuss the case where the numeric variables
are unbounded, i.e., for each v ∈ VR, Dv = [−∞,+∞].
Let s0 = I be a (initial) state. Let Ri be a shortening of
R(Ξi−1, Hi,Ξi) and G a shortening of G(Ξm, G). We ex-
pand Lemma 1 and Lemma 2 over the logs in Tδ obtaining
sm |= G ∧

∧m
i=1 si−1 |= pre(h) ∧ si = γ(Hi, si−1) ⇐⇒

sm ∈Mm(G) ∧
∧m

i=1 si−1 ∈Mi−1(Ri) ∧ si ∈Mi(Ri).

From the left-hand side, we recognise that this coincides
with emulating Tδ from s0, obtaining an accepted run. On
the right-hand side, based on the definition of mapping set,
there must exist a condition state σ such that

σ |= G(Ξm, G) ∧
m∧
i=1

σ |= R(Ξi−1, Hi,Ξi). (7)

We recall that G(Ξm, G) and each R(Ξi−1, Hi,Ξi) are sets
of constraints in the form ψ ⊵ 0 over the variables in Ξ0 ∪
. . .∪Ξm. By Equation (7), the condition state σ must satisfy
these constraints. Notably, satisfying all sets of constraints
is equivalent to satisfying their union. Thus, we can rewrite
Equation (7)

σ |=
m⋃
i=1

R(Ξi−1, Hi,Ξi) ∪ G(Ξm, G) = I(Tδ,Πδ,D).

On the right-hand side of Equation (6) we imposed that
s0 ∈ M0(R1) and, being R1 ⊆ I(Tδ,Πδ,D) it is true that
M0(R1) = M0(I(Tδ,Πδ,D)). We conclude that I = s0 ∈
M0(I(Tδ,Πδ,D)). In the case of bounded variables, there
is a restriction on the accepted states within the ICS, and
the constraint set B(Ξ,D) added to the initial condition con-
straint set ensures this.

Closedness of the ICS. As discussed previously, to solve
the ICR problem, the ICS must be a closed set. For space
reasons, we decided to show all the properties of ICS with-
out restricting it to be close. Now, we close I(Tδ,Πδ,D), as
standard for mathematical programming approaches, by re-
placing each ψ ⊵ 0 in it with (i) ψ ≥ 0 if ⊵ is ≥, (ii) two
formulas ψ ≥ 0 and −ψ ≥ 0 if ⊵ is =, and (iii) ψ′ ≥ 0
with ψ′ = ψ − ε and ε ∈ Q if ⊵ is >. For this reason,
I(Tδ,Πδ,D) is now a closed set of equations in the form
ψ ≥ 0.
Example 2. We continue our example on the Linear Car
planning task ΠLC

δ . Consider the trace log T π
δ presented in

Equation (2). We notice how the processes move and speed
can be squashed together asms = ⟨{on = ⊤}, {v := v+a·
δ, d := d+ v · δ}⟩. The trace log has length m = 9 and then
we produce 10 sets of copy variables, i.e., Ξ0∪. . .∪Ξ9, such
that Ξi = {ξoni , ξdi , ξ

v
i , ξ

a
i , ξ

A
i , ξ

D
i }. For the goal condition

and each (squashed) happening in the trace, we have:

G(Ξ9, G) = {ξon9 = −1} ∪ {ξd9 ≥ 2, ξd9 ≤ 4}
R(Ξ8, {idle},Ξ9) = {ξon8 = 1} ∪ {ξv8 < 0.1, ξa8 < 0.1}

∪ {ξon9 = −1} ∪ {ξa9 = ξa8 , ξ
v
9 = ξv8 , ξ

d
9 = ξd8 ,

ξA9 = ξA8 , ξD9 = ξD8 }
R(Ξ7, {ms},Ξ8) = {ξon7 = 1} ∪ ∅

∪ {ξd8 = ξd7 + ξv7 , ξ
v
8 = ξv7 + ξa7}

∪ {ξa8 = ξa7 , ξ
A
8 = ξA7 , ξD8 = ξD7 , ξon8 = ξon7 }

R(Ξ6, {brake},Ξ7) = {ξon6 = 1} ∪ {ξa6 > ξD6 } ∪ {ξa7 = ξa6 − 1}

∪ {ξon7 = ξon6 , ξv7 = ξv6 , ξ
d
7 = ξd6 , ξ

A
7 = ξA6 , ξD7 = ξD6 }

. . .

R(Ξ1, {gas},Ξ2) = {ξon1 = 1} ∪ {ξa1 < ξA1 } ∪ {ξa2 = ξa1 + 1}

∪ {ξon2 = ξon1 , ξv2 = ξv1 , ξ
d
2 = ξd1 , ξ

A
2 = ξA1 , ξD2 = ξD1 }



R(Ξ0, {turnOn},Ξ1) = {ξon0 = −1} ∪ ∅ ∪ {ξon1 = 1}

∪ {ξa1 = ξa0 , ξ
v
1 = ξv0 , ξ

d
1 = ξd0 , ξ

A
1 = ξA0 , ξD1 = ξD0 }

We have omitted the other constraint sets for brevity, as they
follow the same structure but have different subscripts. We
notice that the initial condition I specified in ΠLC

δ is such
that I ∈ ICS(Tδ,Πδ) but so does the initial condition I ′ =
{d := 49, v := −12, a := 0, on := ⊥, A := 1, D := −1},
which allows generating an accepted run but is not desirable
since it starts with a negative velocity. For this reason, we
impose the bounds Dd = [0,∞], Dv = [0,∞] and Da =
[0,∞], which can be enforced through

B(Ξ0,D) = {ξd0 ≥ 0, ξv0 ≥ 0, ξa0 ≥ 0}

and thus I ∈ ICS(Tδ,Πδ,D) and I ′ ̸∈ ICS(Tδ,Πδ,D).

ICR as Mathematical Programming
We now show how to practically solve the ICR problem,
casting it into a mathematical programming problem and us-
ing all the elements provided above.

Let Πδ be a DH planning task characterised by a flawed
initial state s. In this context, a flaw may refer to a state that
is either incomplete or one from which it is impossible to
generate an accepted run by emulating the given trace log
T = ⟨T1; . . . ; Tm⟩. We consider the numeric variables VR
of Πδ bounded within D.

To define the initial condition constraint set I(Tδ,Πδ,D),
we use the copy variables Ξ = Ξ0 ∪ . . . ∪ Ξm where
Ξi = {ξvi | v ∈ VB ∪ VR}, alongside Tδ , Πδ , and D as
outlined in Definition 3. The task of finding the state IR ac-
cording to Definition 2 can be formulated as the following
mathematical programming problem aimed at determining
an appropriate assignment of the variables Ξ such that:

minimize
∑
v∈VR:
s(v)̸=∅

λv · (ξv0 − s(v))2

subject to ψ ≥ 0 foreach ψ ≥ 0 ∈ I(Tδ,Πδ,D)
ξv0 = ϱ(s(v)) foreach v ∈ VB s.t. s(v) ̸= ∅,

where λv ∈ Q+. The objective function mirrors the dis-
tance employed in the ICS definition by considering all
the numeric variables VR, ignoring the undefined ones, i.e.,
s(v) = ∅. Each term in the sum is weighted by a scaling fac-
tor λv , which can be used to normalise the numerical values
if they have different orders of magnitude. Since, according
to the distance function d provided in Equation (4), violating
the assignments of VB results in an infinite penalty, each ξv0
for v ∈ VB, is constrained to match the value from the given
initial state, i.e., ϱ(s(v)). Moreover, the constraints ensure
that only the assignments of Ξ satisfying I(Tδ,Πδ,D) are
considered.

Worst-Case Size of ICS. From the construction of the
I(Tδ,Πδ,D) set, and the presented example, one can eas-
ily notice that the number of conditions inside of it is in the
worst-case proportional to |Tδ| · |VB∪VR| since, for each log
Li inside the trace, we have at least one numeric condition
for each ξvi ∈ Ξi with Ξi being a copy of VB ∪ VR. Looking

at the Linear Car example, however, we notice how many
conditions are equalities among variables in Ξ and can thus
be substituted away. We will see in the experimental analysis
how the worst-case size is never reached.

Experimental Analysis
The experimental analysis has been performed on well-
known hybrid benchmarks (Fox and Long 2006; Capitanelli
et al. 2018; Piotrowski et al. 2016; Scala et al. 2016). We
have also chosen numeric tasks from the latest IPC (Taitler
et al. 2024) with the most interesting numeric effects. Ta-
ble 1 shows the list of domains and their category, namely
non-linear (NL) if the numeric effects contain multiplica-
tions between the variables in VR, and linear (L) otherwise.
To generate the trace log Tδ , for each planning task we em-
ployed the solver ENHSP (Scala et al. 2016) for the hybrid
domains and PATTY (Cardellini, Giunchiglia, and Maratea
2024) for the numeric domains, with a time limit of 30 min,
to find a valid plan starting from an initial condition I⋆, and
we collected the generated traces. Table 1 shows, for each
planning task, the number of traces found (#), the average
number of variables (|VB ∪ VR|), and the average length of
the trace log (|Tδ|). Using the traces found by the planners as
input, we run two experimental benchmarks. In the first anal-
ysis, we partialised the original initial condition I⋆ by dif-
ferent amounts, and we solved the ICR problem by searching
for a solution that covers as much as possible the assigned
values while filling the unassigned ones. In the second anal-
ysis, we perturbed the initial condition I⋆ with some noise
and analysed some properties of the retrieved initial condi-
tions. To solve the mathematical programming problem as-
sociated with the ICR problem, we used the general-purpose
optimiser SCIPY (Virtanen et al. 2020) which can solve non-
linear programming problems employing the interior point
algorithm (Byrd, Hribar, and Nocedal 1999). To close the
ICS set, we employed ε = 10−6. All the experiments have
been run on an Intel Xeon Platinum 8000 3.1GHz with 8 GB
of RAM.2

Partialised Initial Condition. In this experimental set-
ting, for each planning task, we first computed the I(Tδ,Πδ)
under the form of a set of constraints using the trace log
found by the planners. Table 1 shows the average size of the
initial condition constraint set I(Tδ,Πδ), and the average
time to construct it for each domain. This confirms the claim
made in the previous section about the worst case never be-
ing reached; even in the domains WATERING, FARMLAND-
FO, HYDROPOWER and HVAC, where either the trace log
is very long, there are many variables or the non-linear dy-
namic makes it difficult to perform the substitutions of the
equalities, the size of I(Tδ,Πδ) remains limited, paying the
price of employing more time in its generation. We then
solved the ICR problem, searching for the closest initial con-
dition in the ICS which respects a partial assignment as much
as possible. We obtained the partial assignment for each do-
main by partialising the original initial condition I⋆, which

2The experimental benchmarks are available at https://github.
com/maurovallati/ICR-ICAPS2025. The ICR solver is part of the
PATTY solver (http://pattyplan.com)



Domain Stats ICS stats ICR stats
Domain # |Vb ∪ Vn| |Tδ| |I(Tδ, G)| Time β = 1 β = 0.5 β = 0
Hybrid
BAXTER (L) 19 105.4 17.6 5.8 0.1s 0.1s 0.3s 0.4s
DESCENT (NL) 20 17.0 36.5 52.7 0.4s 1.0s 5.2s 15.3s
HVAC (NL) 18 37.5 136.1 43.2 24.9s 7.8s 26.0s 60.4s
LINEARCAR (L) 10 8.0 39.9 14.2 0.1s 0.1s 0.1s 0.1s
SOLARROVER (L) 20 20.0 533.0 2.0 2.1s 0.1s 0.1s 0.1s
Numeric
COUNTERS (L) 11 12.3 106.4 114.8 0.2s 0.2s 1.5s 12.8s
COUNTERS-FO (L) 19 25.0 219.4 219.2 1.8s 0.6s 6.1s 15.9s
DELIVERY (L) 9 173.9 50.8 13.6 0.4s 0.2s 0.3s 0.5s
DRONE (L) 16 132.2 99.6 155.9 0.8s 3.6s 22.1s 21.3s
EXPEDITION (L) 2 66.0 214.0 108.5 0.9s 0.1s 0.7s 10.0s
FARMLAND (L) 20 42.3 290.6 290.1 1.3s 0.2s 4.0s 57.8s
FARMLAND-FO (L) 18 56.2 961.5 958.0 15.6s 4.5s 32.2s 43.8s
HYDROPOWER (L) 20 4059.0 97.1 66.1 15.7s 0.5s 1.6s 4.1s
MPRIME (L) 14 368.6 126.4 66.1 2.8s 0.2s 0.5s 0.6s
ROVER (L) 15 472.8 86.5 77.9 2.3s 0.1s 0.6s 0.6s
SAILING (L) 18 16.6 648.4 23.6 1.9s 0.1s 1.6s 1.4s
SAILING-FO (L) 20 15.0 581.8 16.4 2.6s 0.1s 1.1s 2.2s
SUGAR (L) 19 178.8 61.2 52.6 0.5s 0.8s 1.0s 0.8s
WATERING (L) 18 50.9 1085.4 201.2 13.8s 1.6s 7.3s 13.3s

Table 1: Solving times required to build the ICS and solve
the ICR on hybrid and numeric planning domains. The do-
mains can be linear (L) or non-linear (NL) depending on
the form of the numeric effects. The value β represents the
percentage of known initial condition.

serves as the starting point for generating the trace log com-
puted by the planners. The value β indicates the ratio be-
tween the number of assigned values and |VB∪VR|. (i) When
β = 0, solving the ICR problem involves finding any valid
condition within the ICS. (ii) For values of 0 < β < 1, the
objective shifts to finding an initial condition within the ICS
that fills all unassigned values while adhering as closely as
possible to the assigned values of the partial state. (iii) When
β = 1, s is identical to I⋆, and the task reduces to verifying
that I⋆ resides within the ICS.

The ICR statistics columns present the times required to
retrieve an initial condition within the ICS for the three sce-
narios. In all cases, the solutions were found by SCIPY with
an associated cost of 0. This is because in cases (i) and
(ii) the original initial condition I⋆ can always be retrieved,
while in case (iii), the cost associated with each condition in
the ICS is also 0. Furthermore, all returned initial conditions
have been validated against the trace, ensuring that the trace
log can be emulated from the corresponding initial condi-
tion and lead to a state satisfying the goal. From Table 1, we
observe that the problem becomes more challenging as the
value of β decreases, indicating that more variables remain
unassigned. When information is removed from the objec-
tive function, SCIPY has less guidance on where the initial
conditions may lie, resulting in increased time to ensure that
all constraints are satisfied.

Noisy Initial Condition. Here, we perturbed the initial
condition I⋆ with Gaussian noise on all the numeric vari-
ables, obtaining a perturbed initial condition Ĩ . More for-
mally, we constructed Ĩ such that, for each x ∈ VR, we have
Ĩ(x) ∼ N (I⋆(x), I⋆(x) · η) where N is the Gaussian dis-
tribution and η ∈ R≥0 adjusts the noise variance. Then, we
solved the ICR problem, asking to find a solution inside the
bounded ICS ICS(Tδ,Πδ,D) as close as possible to the per-
turbed Ĩ . For each planning task, we specified the domain

Figure 1: Line chart showing how the distance between the
retrieved initial condition IR, the perturbed initial condition
Ĩ and the original initial condition I⋆ changes based on the
noise introduced.

Dx for each numeric variable, based on the semantics of the
variable. Fig. 1 shows, for a single planning task of three rep-
resentative domains, due to their interesting numeric effects,
how, by varying the noise variance η, the ICR can retrieve
an initial condition lying in the ICS. The orange line denotes
the distance between the retrieved function IR and the orig-
inal condition I⋆, while the blue line denotes the distance
between IR and the perturbed condition Ĩ . It can be noted
how, when the noise is low, both lines increase, with the or-
ange line dominating the blue line. When the noise becomes
large, the orange line stops growing and remains constant,
while the blue line keeps diverging. This indicates that the
retrieved IR has reached the bounds of the ICS, as depicted
in Fig. 1 (top-right). By validating each time the retrieved
initial condition, this experiment verifies experimentally that
all the IR inside the ICS of it are valid.

Conclusions and Future Work

In this paper, we formally defined the Initial Condition Re-
trieving problem, which allows us to identify an initial state
from which a given plan trace can reliably reach a goal state.

Our contributions are multifaceted. First, we established a
formal method for constructing the ICS, with a focus on dis-
cretised hybrid planning. Second, we proposed an efficient
strategy to tackle the ICR problem by reframing it as a math-
ematical programming task. Third, we provided empirical
evidence of the method’s efficacy across a variety of bench-
marks. Finally, we demonstrated the adaptability of our ap-
proach to numeric planning tasks.

In our future work, we aim to relax some assumptions of
this study by enabling the handling of partial traces that may
lack events or processes and accommodating noisy data. Ad-
ditionally, we plan to extend our framework to address more
complex formulae for preconditions and goals.
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