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Abstract

We consider temporal numeric planning problems Π ex-
pressed in PDDL 2.1 level 3, and show how to produce SMT
formulas (i) whose models correspond to valid plans of Π,
and (ii) that extend the recently proposed planning with pat-
terns approach from the numeric to the temporal case. We
prove the correctness and completeness of the approach and
show that it performs very well on 10 domains with required
concurrency.

Introduction
We consider temporal numeric planning problems expressed
in PDDL 2.1 level 3 (Fox and Long 2003). Differently from
the classical case, where plans are sequences of instanta-
neous actions and variables are Boolean, in these problems
actions may have a duration, are executed concurrently over
time, and can affect Boolean and numeric variables at both
the start and end of their execution. These two extensions
make the problem of finding a valid plan much more diffi-
cult –even undecidable in the general case (Helmert 2002;
Gigante et al. 2022)– and extending state-of-the-art solving
techniques from the classical/numeric to the temporal nu-
meric setting is far from easy.

In this paper, we extend the recently proposed Symbolic
Pattern Planning (SPP) approach (Cardellini, Giunchiglia,
and Maratea 2024) to handle temporal numeric problems.
Specifically, given one such problem Π and a bound n ∈
N≥0, we show how to produce a Satisfiability Modulo The-
ory (SMT) formula (Barrett et al. 2021) (i) whose models
correspond to valid plans of Π (correctness), (ii) which is
ensured to be satisfiable for some value of the bound n
when Π has a valid plan (completeness), and (iii) which
is equivalent to the pattern encoding proposed by Cardellini,
Giunchiglia, and Maratea when the problem is numeric, i.e.,
when all the actions are instantaneous. These results signifi-
cantly advance the state-of-the-art, as all symbolic tempo-
ral numeric planners are based on the standard encoding
with effect and explanatory frame axioms. Given this, we
expect to obtain also in the temporal setting the substan-
tial improvements achieved in the numeric case, where it
was shown (i) that the pattern encoding dominates (i.e., is
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able to produce valid plans with a bound n possibly lower
and never higher than) both the relaxed-relaxed R2∃ encod-
ing (Balyo 2013; Bofill, Espasa, and Villaret 2017), and the
action rolling R encoding (Scala et al. 2016b); (ii) that both
the R2∃ and R encodings dominate the standard one, and
(iii) that theoretical dominance leads to improved experi-
mental performance, as shown by the analysis in (Cardellini,
Giunchiglia, and Maratea 2024) on the numeric benchmarks
of the 2023 International Planning Competition.

To test the effectiveness of our approach, we compare
our planner with all publicly available temporal planners
(both symbolic and based on search) on 10 temporal do-
mains with required concurrency (Cushing et al. 2007). The
results highlight the strong performances of our planner,
which achieved the highest coverage (i.e., number of solved
problems) in 9 out of 10 domains, while the second-best
planner had the highest coverage in 4 domains. Additionally,
compared to the other symbolic planners, our system is able
to find a valid plan with a lower bound on all the problems.

The main contributions of this paper are thus:

1. We extend the SPP approach to handle temporal numeric
problems specified in PDDL 2.1.

2. We prove the correctness and completeness of our SMT
encoding.

3. We conduct an extensive comparative analysis with
all available temporal numeric planners, both search-
based and symbolic-based, and show that our approach
achieves the highest coverage in 9 out of 10 domains.

After the preliminary definitions, we present the basic
ideas underlying current standard encodings in SMT, fol-
lowed by the presentation of our approach, the experimental
comparative analysis and the conclusions. A running exam-
ple is used to illustrate the features of our encoding.

Preliminaries
In PDDL2.1 (Fox and Long 2003) a temporal numeric plan-
ning problem is a tuple Π = ⟨VB , VN , A, I,G⟩, where

1. VB and VN are finite sets of Boolean and numeric vari-
ables, ranging over {⊤,⊥} and Q respectively,

2. I is a selected initial state, and a state is a function map-
ping each variable to an element in its domain,



3. G is a finite set of conditions, called goals. A condition
is either v = ⊤ or v = ⊥ or ψ ⊵ 0, with v ∈ VB , ψ a
linear expression in VN and ⊵ ∈ {<,≤,=,≥, >}.

4. A is a finite set of (instantaneous/snap) actions and du-
rative actions. An action a is a pair ⟨pre(a), eff(a)⟩ in
which (i) pre(a) are the (pre)conditions of a, and (ii)
eff(a) are the effects of a of the form v := ⊤, v := ⊥,
x := ψ, with v ∈ VB , x ∈ VN and ψ a linear expression
in VN . For each action a, every variable v ∈ VB ∪ VN
must occur in eff(a) at most once to the left of the
assignment operator “:=”, and when this happens v is
said to be assigned by a. A durative action b is a tu-
ple ⟨b⊢, b⊢⊣, b⊣, [L,U ]⟩, where b⊢, b⊢⊣, b⊣ are the actions
starting, lasting and ending b, respectively, and L,U ∈
Q>0 are bounds on the duration d of b, L ≤ U . The
action b⊢⊣ has no effects, and its preconditions pre(b⊢⊣)
must hold throughout the execution of b. From here on,
for simplicity, we consider only durative actions, as snap
actions can be treated as durative actions without lasting
and ending actions, as in (Panjkovic and Micheli 2023).

Let Π = ⟨VB , VN , A, I,G⟩ be a temporal numeric plan-
ning problem. A timed durative action is a pair ⟨t, b⟩ with
t ∈ Q≥0 and b a durative action ⟨b⊢, b⊣, b⊢⊣, [L,U ]⟩ in which
[L,U ] is replaced with a single duration value d ∈ [L,U ]: t
(resp. t + d) is the time in which b⊢ (resp. b⊣) is executed.
A temporal (numeric) plan π for Π is a finite set of timed
durative actions. Thus, in π, multiple snap actions can be
executed at the same time, but any two such actions a and
a′ must be non mutex, i.e., a must not interfere with a′, and
vice versa. An action a does not interfere with an action a′
if for every variable v assigned by a
1. v does not occur in the preconditions of a′, and
2. if v ∈ VB , either v is not assigned by a′ or v := ⊤ ∈

eff(a) if and only if v := ⊤ ∈ eff(a′), and
3. if v ∈ VN then either v does not occur in the effects of a′

or the only occurrences of v in both a and a′ are within
linear increments of v. An expression v := v + ψ is a
linear increment of v if v does not occur in ψ.

If a and a′ are not in mutex, the order in which they are exe-
cuted in any state s is not relevant, i.e., res(a, res(a′, s)) =
res(a′, res(a, s)). The expression res(a, s) is the result of
executing a in state s, which (i) is defined when s sat-
isfies the preconditions of a, and (ii) is the state s′ =
res(a, s) such that for each v ∈ VB ∪ VN , s′(v) = s(e)
if v := e ∈ eff(a), and s′(v) = s(v) otherwise. Given a set
A = {a1, . . . , an} of pairwise non mutex actions, we write
res(A, s) as an abbreviation for res(a1, . . . , res(an, s) . . .),
order not relevant.

Consider a temporal plan π. The execution of π induces a
sequence of states s0, s1; . . . ; sm, each state si with an asso-
ciated time ti > ti−1 at which a non empty setAi of actions,
each starting/ending a durative action in π, is executed. The
temporal plan π is valid if:
1. s0 is the initial state, si+1 = res(Ai+1, si) and sm satis-

fies the goal formulas, with i ∈ [0,m);
2. ϵ-separation: for any pair of mutex actions a ∈ Ai and
a′ ∈ Aj , |ti − tj | ≥ ϵ > 0 (and thus i ̸= j);

3. no self-overlapping: for any two distinct timed durative
actions ⟨t, b⟩ and ⟨t′, b⟩ with durations d and d′ respec-
tively, if t′ ≥ t in π, then t′ ≥ t+ d;

4. lasting-action: for each timed durative action
⟨t, ⟨b⊢, b⊣, b⊢⊣, d⟩⟩ in π, if b⊢ and b⊣ are executed
at ti = t and tj = ti + d respectively, the preconditions
of b⊢⊣ are satisfied in each state si, . . . , sj−1.

We thus considered the standard notion of validity used, e.g.,
in (Fox and Long 2003; Rankooh and Ghassem-Sani 2015;
Haslum et al. 2019; Panjkovic and Micheli 2024), in which,
assuming VN = ∅, the problem of deciding the existence
of a valid temporal plan is in PSPACE. Other, more general
definitions of plan validity can be given, relaxing the second
condition to allow for |ti − tj | > 0 and/or removing the
third condition. With such generalizations, the complexity
of deciding the existence of a valid temporal plan, still with
VN = ∅, can become EXPSPACE-complete (Rintanen 2007)
and can even become undecidable (Gigante et al. 2022).

Standard Encodings in SMT
Several approaches for computing a valid plan of Π have
been proposed, either based on search (see, e.g., (Ben-
ton, Coles, and Coles 2012; Gerevini, Saetti, and Serina
2010; Eyerich, Mattmüller, and Röger 2012)) or on plan-
ning as satisfiability (see, e.g., (Shin and Davis 2004, 2005;
Rankooh and Ghassem-Sani 2015; Rintanen 2015; Cash-
more et al. 2016; Rintanen 2017; Cashmore, Magazzeni, and
Zehtabi 2020; Panjkovic and Micheli 2023, 2024)). We fol-
low the second approach, in which (i) a bound or number of
steps n (initially set to 0) is fixed, (ii) a corresponding SMT
formula is produced, and (iii) a valid plan is returned if the
formula is satisfiable, while n is increased and the previous
step iterated, otherwise. In more detail, given a temporal nu-
meric planning problem Π = ⟨VB , VN , A, I,G⟩ and a value
for the bound n ≥ 0, in the second step, these works:
1. Make n+1 copies of a set X of state variables which in-

cludes VB∪VN , each copy Xi meant to represent the state
at the i-th step; make n copies of a set A of (Boolean) du-
rative action variables which includes A, each copy Ai

meant to represent the durative actions executed at the i-
th step; and introduce a set {t0, . . . , tn} of time variables,
each ti being the time associated to the i-th state Xi.

2. Impose proper axioms defining the value of the variables
in Xi+1 based on the values of the variables in Xi, and
of the snap actions which are executed in the state Xi.
In particular, these axioms enforce in the state Xi+1 the
effects of the actions executed in the state Xi, and also
that no two mutex actions are executed in Xi.

A similar construction underpins also the standard encoding
used for classical and numeric planning problems. However,
in these contexts, the standard encoding is known to under-
perform compared to theR encoding by Scala et al. (2016b),
the R2∃ encoding by Bofill, Espasa, and Villaret (2016),
and the pattern ≺-encoding by Cardellini, Giunchiglia, and
Maratea (2024). Indeed, at each step i ∈ [0, n),
1. in the R encoding, each action variable can be “rolled-

up” taking a value in N≥0 representing how many times



the action is consecutively executed,
2. the R2∃ encoding allows for the execution of actions in

mutex and/or with contradictory effects, and
3. the ≺-encoding allows for the consecutive execution of

actions, even if in mutex and with contradictory effects.
As a consequence, the ≺-encoding dominates the R2∃ and
R encodings, which in turn dominate the standard encoding.
This dominance usually leads to better performance, as the
number of solver calls, along with the number of variables
and the encoding size, all increase linearly with the bound n.

To highlight the potential benefits of moving from the
standard encoding to the ≺-encoding also in the temporal
numeric setting, consider the following simplified version
of the bottle example from (Shin and Davis 2005).
Example. There is a set {1, . . . , q} of bottles, the first p of
which containing li litres of liquid (i ∈ [1, p]), and the action
pri,j of pouring from the i-th bottle (with effects at start) in
[1, p] into the j-th bottle in (p, q] (with effects at end), one
litre every di,j seconds. In the current encodings, each pri,j

is Boolean and thus can be executed at most once in between
two consecutive states. Further, time variables are associ-
ated to the states. For these reasons, with a current encoding
S, the goal of emptying the bottles in [1, p] needs a number
of steps n ≥ maxpi=1 li, how many depending also on the
specific di,j values since each executed pri,j can start/end
at a different time from the others. Further, S needs at least
n =

∑p
i=1 li steps when q = p + 1, due to the conflicting

effects of pouring to a single bottle.
Despite the apparent complexity introduced by the tem-

poral aspects, (Cushing et al. 2007) demonstrated that these
problems are no more difficult than their numeric coun-
terparts without the temporal requirements. Indeed, in the
above domain each problem admits a solution in which all
the durative actions are sequentially executed, one after the
other. For this reason, such problems are said to be without
required concurrency (Cushing et al. 2007), and they can
be (more easily) solved by non-temporal planners by (i) re-
placing each durative action b with a snap action combining
the preconditions and effects of b⊢, b⊢⊣, b⊣, (ii) finding a se-
quential solution to the resulting non-temporal problem, and
(iii) post-process the found solution to introduce execution
times. We thus consider the following example, whose prob-
lems require concurrency.
Example (cont’d). Consider the previous example extended
with nck which at start uncaps the bottle k ∈ [1, q] and
then caps it back after dk seconds. Any problem in which all
the bottles are initially capped requires concurrency, since
pouring from i to j is possible only if both bottles i and j
are uncapped. This scenario can be modelled in PDDL 2.1
with VB = {ck | k ∈ [1, q]}, VN = {lk | k ∈ [1, q]} and the
set of durative actions A = {nck | k ∈ [1, q]} ∪ {pri,j |
i ∈ [1, p], j ∈ (p, q]} whose actions are:

pr⊢
i,j : ⟨{ci = ⊥, li > 0, cj = ⊥}, {li −= 1}⟩,

pr⊢⊣
i,j : ⟨{ci = ⊥, cj = ⊥}, ∅⟩,pr⊣

i,j : ⟨∅, {lj += 1}⟩,
nc⊢

k : ⟨{ck = ⊤}, {ck := ⊥}⟩,nc⊣
k : ⟨{ck = ⊥}, {ck := ⊤}⟩.

As customary, v += ψ (resp. v −= ψ) is an abbrevia-
tion for v := v + ψ (resp. v := v − ψ). With q = 2 and

p = 1, there are three durative actions pr1,2, nc1 and nc2.
Considering the starting/ending actions, pr⊢

1,2 is mutex with
nc⊢

1 , nc⊣
1 . nc⊢

2 , nc⊣
2 . If the bottles are initially capped and

the durations allow to pour all the litres with just one execu-
tion of nc1 and nc2), we need a bound
1. n = l1 + 3 with the standard encoding (one step for

uncapping the bottles, 1 step for starting the first pour
action after ϵ time, l1 steps for pouring the litres and the
final step for executing the capping of the bottles),

2. n = 4 if we generalize the R encoding since we can roll-
up the pr1,2 action and collapse the l1 steps into 1,

3. n = l1 if we generalize the R2∃ encoding since we can
execute all the actions (even the mutex ones) in one step
except for the repeated execution of pr1,2 (action vari-
ables are still Boolean),

4. n = 1 if we generalize the ≺-encoding since we can exe-
cute all the actions in one step.

If, e.g., q = 4 and p = 2 in the standard encoding we
need n = l1 + l2 + 3 steps if the durations of the pour
actions forces them to start/end at different times, while we
can maintain n = 1 generalizing the ≺-encoding.

Temporal Numeric Planning with Patterns
Let Π = ⟨VB , VN , A, I,G⟩ be a temporal numeric planning
problem. Here, we extend the SPP approach to the temporal
setting by (i) formally defining the notion of pattern ≺ and
defining the sets X ,A≺, T ≺,X ′ of variables used in our en-
coding; (ii) extending the definition of rolling to durative
actions; (iii) defining the pattern state encoding formula,
T≺
s (X ,A≺,X ′), setting the value of each variable in X ′ as

a function of X and A≺; (iv) defining the pattern time en-
coding formula, T≺

t (A≺, T ≺), enforcing the desired tempo-
ral properties of the actions; and (v) proving the correctness
and completeness of the presented encoding. Each point is
treated in a separate subsection. Intuitively, a pattern is a se-
quence of starting/ending actions. For each of these actions,
the encoding sets (i) an integer specifying how many times
the corresponding durative action is executed in sequence,
(ii) the conditions for its executability and effects, and (iii)
the time at which each durative action sequence has to be
started/ended. While durative action sequences that do not
interfere might swap order, those that interfere need to main-
tain the ordering given in the pattern for their starting/ending
actions, to ensure executability.

Pattern and Language Definition
A pattern is a finite sequence ≺ = a1; a2; . . . ; ak of actions,
each starting/ending a durative action inA. A pattern is arbi-
trary, allowing for multiple occurrences of the same action,
even consecutively. Each action occurrence in the pattern
corresponds to a distinct variable in the encoding, and, given
the variable name, we have to be able to uniquely identify
1. which durative action it is starting/ending, and
2. which of the possible multiple occurrences of the action

in ≺ we are considering.
For these reasons, we perform the following two initial steps
which do not affect the generality of our approach:



1. Whenever in A there are two distinct durative actions b1
and b2 with b⊢1 = b⊢2 or b⊢1 = b⊣2 or b⊣1 = b⊣2 , we break
the identity by adding to the preconditions of one of the
two actions an always satisfied condition like 0 = 0, and

2. In a pattern ≺, repeated occurrence of an action a are re-
placed with distinct copies a′. Both a and a′ are assumed
to be starting/ending the same durative action b, and,
abusing notation, we write, e.g., a = b⊢ and a′ = b⊢.

We can therefore take the action in the pattern to be the ac-
tion variables in our encoding, and we can assume that each
action starts/ends exactly one durative action.

Consider a pattern ≺ = a1; a2; . . . ; ak, k ≥ 0. Our en-
coding is based on the following sets of variables:
1. X = VB ∪ VN to represent the initial state;
2. X ′ containing a next state variable x′ for each state vari-

able x ∈ X , used to represent the goal state;
3. A≺ consisting of the set of actions in the pattern ≺, each

variable ai ranging over N≥0 and whose value represents
the number of times the durative action started/ended by
ai is consecutively executed/rolled up, with i ∈ [1, k];

4. T ≺, with (i) a variable ti ∈ Q≥0 representing the time
in which the i-th action ai in ≺ is executed; (ii) if ai
is starting b, a variable di ∈ Q≥0 representing the time
taken by the consecutive execution of b for p times, where
p ≥ 0 is the value assumed by the variable ai ∈ A≺, and
(iii) for convenience, a variable t0 = 0 as the initial time.

In the following we keep using v, w, x for state variables, ψ
for a linear expression, a for a (snap) action, b for a durative
action, t for a time variable and d for a duration, each symbol
possibly decorated with subscripts/superscripts.

Rolling Durative Actions
We start by defining when a durative action b can be rolled
up. Intuitively, b can be consecutively executed more than
once when (i) the Boolean effects of its starting/ending ac-
tions do not disable the repetition of b given the precondi-
tions of its starting/lasting/ending actions, (ii) the numeric
effects of b⊢ and b⊣ do not interfere between themselves,
and (iii) it might be useful to execute b more than once.
Formally, we say that b is eligible for rolling if the following
three conditions are satisfied:
1. if V, V ′ ∈ {⊥,⊤}, V ̸= V ′, then (i) v = V ∈pre(b⊢) iff
v := V ∈ eff(b⊣) or v := V ′ ̸∈ eff(b⊢) ∪ eff(b⊣), and
(ii) v = V ∈pre(b⊢⊣) ∪ pre(b⊣) iff v := V ∈ eff(b⊢) or
v := V ′ ̸∈ eff(b⊢) ∪ eff(b⊣);

2. if v := ψ is a numeric effect of b⊢ or b⊣, then (i) v does
not occur in any other effect of b⊢ or b⊣, and (ii) either v
does not occur in ψ or v := ψ is a linear increment;

3. b⊢ or b⊣ include a linear increment in their effects (this
last condition imposed for the usefulness of rolling).

If b has a duration in [L,U ] and is eligible for rolling, con-
secutively executing b for p ≥ 1 times
1. has a duration in [p × L + (p − 1) × ϵb, p × U + (p −

1)× ϵb], where ϵb = ϵ if b⊢ and b⊣ are mutex, and ϵb = 0
otherwise. Such interval allows for ϵ-separation if b⊢ and
b⊣ are mutex;

2. causes v to get value (p×ψ) if v += ψ is a linear incre-
ment of b⊢ or b⊣, while all the other variables keep the
value they get after the first execution of b.

Notice that it is assumed that all the consecutive executions
of b have the same duration. Indeed, according to the seman-
tics, the duration of b can be arbitrarily fixed as long as each
single execution respects the duration constraints, which are
part of the domain specification. This assumption does not
affect the completeness of our encoding. Should every valid
plan require two consecutive executions of b with different
durations, we will find a plan when considering a pattern
with two or more occurrences of the starting/ending actions
of b. Indeed, rolling is an optimization, and our procedure is
complete even if we rule out rolling by adding the constraint
a ≤ 1 for each action a.

Then, for each i ∈ [0, k], the value of a variable v ∈
VB ∪ VN after the sequential execution of a1; . . . ; ai, each
action possibly repeated multiple times, is given by σi(v),
inductively defined as σ0(v) = v, and, for i > 0,

1. if v is not assigned by ai, σi(v) = σi−1(v);
2. if v := ⊤ ∈ eff(ai), σi(v) = (σi−1(v) ∨ ai > 0);
3. if v := ⊥ ∈ eff(ai), σi(v) = (σi−1(v) ∧ ai = 0);
4. if v += ψ ∈ eff(ai) is a linear increment,

σi(v) = σi−1(v) + ai × σi−1(ψ),

i.e., the value of v is incremented by σi−1(ψ) a number
of times equal to the value assumed by the variable ai;

5. if v := ψ ∈ eff(ai) is not a linear increment,

σi(v) = ITE(ai > 0, σi−1(ψ), σi−1(v)),

where ITE(c, t, e) (for “If (c) Then t Else e” returns t or
e depending on whether c is true or not, and is a standard
function in SMTLIB (Barrett, Fontaine, and Tinelli 2016).

Above and in the following, for any linear expression ψ and
i ∈ [0, k], σi(ψ) is the expression obtained by substituting
each variable v ∈ VN in ψ with σi(v).

Given a durative action b eligible for rolling and a state
s, to determine the maximum number of times that b can be
executed consecutively in s, we rely on the following Theo-
rem, in which ψ[p, b⊢, q, b⊣] represents the value of ψ after p
and q repetitions of the actions b⊢ and b⊣, respectively. For-
mally, ψ[p, b⊢, q, b⊣] is the expression obtained from ψ by
substituting each variable x with

1. x+ p× ψ′ (resp. x+ q × ψ′), when x += ψ′ ∈ eff(b⊢)
(resp. x += ψ′ ∈ eff(b⊣)) is a linear increment, and

2. ψ′′, when x := ψ′′ ∈ eff(b⊢) ∪ eff(b⊣) is not a linear
increment.

Theorem 1. Let b be a durative action eligible for rolling.
Let s be a state. The result of executing b⊢; b⊢⊣; b⊣ consecu-
tively for p ≥ 1 times in s is defined if and only if for each
numeric condition ψ ⊵ 0,

1. if ψ ⊵ 0 ∈ pre(b⊢), s satisfies ψ[0, b⊢, 0, b⊣] ⊵ 0 (i.e.,
ψ ⊵ 0) and ψ[p− 1, b⊢, p− 1, b⊣]⊵ 0;

2. if ψ⊵0 ∈ pre(b⊢⊣)∪pre(b⊣), s satisfies ψ[1, b⊢, 0, b⊣]⊵0
and ψ[p, b⊢, p− 1, b⊣]⊵ 0.



Proof. The thesis follows from the monotonicity in p of the
functions ψ[p− 1, b⊢, p− 1, b⊣] and ψ[p, b⊢, p− 1, b⊣] (see
(Scala et al. 2016b)).

Example (cont’d). For i ∈ [1, p], j ∈ (p, q], the pouring
action pri,j is eligible for rolling while both nci and ncj

are not. Action pri,j can be consecutively executed for li
times in the states in which bottles i and j are uncapped and
at least li litres are in the i-th bottle.

The Pattern State Encoding
Let ≺ = a1; a2; . . . ; ak, k ≥ 0, be a pattern. The pattern
state encoding defines the executability conditions of each
action and how to compute the value of each variable in X ′

based on the values of the variable in X and in A≺. For-
mally, the pattern state ≺-encoding T≺

s (X ,A≺,X ′) of Π is
the conjunction of the formulas in the following sets:
1. pre≺(A): for each i ∈ [1, k] and for each v = ⊥, w = ⊤,
ψ ⊵ 0 in pre(ai):

(a) ¬v and w must hold to execute ai:
ai > 0 → (¬σi−1(v) ∧ σi−1(w)),

(b) and, if ai is starting b, (i.e., if ai = b⊢) (Theorem 1):
ai > 0 → σi−1(ψ[0, b

⊢, 0, b⊣])⊵ 0,
ai > 1 → σi−1(ψ[ai − 1, b⊢, ai − 1, b⊣])⊵ 0,

(c) if ai is ending b, (i.e., if ai = b⊣) (Theorem 1, noting
that in σi−1, b⊢ has been executed ai times):

ai > 0 → σi−1(ψ[−ai + 1, b⊢, 0, b⊣])⊵ 0,
ai > 1 → σi−1(ψ[0, b

⊢, ai − 1, b⊣])⊵ 0.

2. amo≺(A): for each i ∈ [1, k], if ai is starting a durative
action which is not eligible for rolling:

ai ≤ 1.

3. frame≺(VB ∪VN ): for each variable v∈VB and w∈VN :
v′ ↔ σk(v), w′ = σk(w).

Example (cont’d). Assume p = 2 and q = 4. Let
nc⊢

1 ;nc
⊢
2 ;nc

⊢
3 ;nc

⊢
4 ;pr

⊢
1,3;pr

⊢
1,4;pr

⊢
2,3;pr

⊢
2,4;

nc⊣
1 ;nc

⊣
2 ;nc

⊣
3 ;nc

⊣
4 ;pr

⊣
1,3;pr

⊣
1,4;pr

⊣
2,3;pr

⊣
2,4.

(1)

be the fixed pattern ≺. Assume i ∈ [1, 2], j ∈ [3, 4], k ∈
[1, 4]. The pattern state encoding entails (nc⊢k ≤ 1) since
the durative action nc is not eligible for rolling, and

nc⊢
i > 0 → ci, nc⊣

i > 0 → ¬(ci ∧ nc⊢
i = 0),

pr⊢
i,j > 0 → (¬(ci ∧ nc⊢

i = 0) ∧ ¬(cj ∧ nc⊢
j = 0)),

pr⊢
i,3 > 0 → li > 0, pr⊢

i,4 > 0 → li − pr⊢
i,3 > 0,

pr⊢
i,3 > 1 → pr⊢

i,3 < li, pr⊢
i,4 > 1 → pr⊢

i,4 < li − pr⊢
i,3,

c′k ≡ (ck ∧ nc⊢
k = 0) ∨ nc⊣

k > 0,
l′i = li − pr⊢

i,3 − pr⊢
i,4, l′j = lj + pr⊣

1,j + pr⊣
2,j .

The first four lines define the preconditions for executing
each action, and the last two specify the frame axioms.

As the frame axioms in the example make clear, the ≺-
encoding allows in the single state transition from X to X ′

(i) the multiple consecutive execution of the same action,
as in the rolled-up R encoding (Scala et al. 2016b), and (ii)
the combination of multiple even contradictory effects on a
same variable by different actions, as in the R2∃ encoding
(Bofill, Espasa, and Villaret 2016).

The Pattern Time Encoding
Let ≺ = a1; a2; . . . ; ak, k ≥ 0, be a pattern. The pattern
time ≺-encoding associates to each action ai in ≺ a starting
time ti and duration di, which are both set to 0 when ai is
not executed, i.e., when ai = 0. In defining the constraints
for ti and di they have to respect the semantics of tempo-
ral planning problems and also the causal relations between
the actions in the pattern and exploited in the pattern state
≺-encoding. Consider for instance two actions ai and aj in
≺ with i < j, ai > 0 and aj > 0. We surely have to guar-
antee that ti < tj if ai and aj are in mutex: the formulas
checking that the preconditions of aj (resp. ai) are satisfied,
take into account that ai (resp. aj) has been (resp. has not
been) executed before aj (resp. ai). Even further, we have to
impose that ti + ϵ ≤ tj for the ϵ-separation rule. If, on the
other hand, ai and aj are not in mutex, then it is not nec-
essary to guarantee ti < tj unless aj is ending the durative
action started by ai or because of the lasting action of the
durative action started by aj . As an example of the impact
of the lasting action on the encoding, assume aj is starting
action b. Then, it may be the case ai is not in mutex with
aj but it is in mutex with the lasting action b⊢⊣ of b. Hence,
the formulas checking the executability of b⊢⊣ encode that ai
precedes aj in the pattern, and consequently we will have to
guarantee ti < tj .

Given the above, the pattern time ≺-encoding
T≺
t (A≺, T ≺) of ≺ is the conjunction of (t0 = 0) and

the following formulas:
1. dur≺(A): for each durative action ⟨b⊢, b⊣, b⊢⊣, [L,U ]⟩ ∈
A and for each action ai = b⊢ and aj = b⊣ in ≺:

ai > 0 → ti ≥ t0 + ϵ,
ai = 0 → ti = t0 ∧ di = 0, aj = 0 → tj = t0,

ai > 0 → ai × (L+ ϵb) ≤ di + ϵb ≤ ai × (U + ϵb).

The last formula guarantees also ϵ-separation when b is
consecutively executed, and b⊢ and b⊣ are in mutex.

2. start-end≺(A): for each durative action b, each starting
action ai = b⊢ (resp. ending action aj = b⊣) in ≺ must
have a matching ending (resp. starting) action:

ai > 0 →
∨

j∈Ei
(ai = aj ∧ tj = ti + di),

aj > 0 →
∨

i∈Sj
(ai = aj ∧ tj = ti + di),

where Ei = {j ∈ (i, k] | ai = b⊢, aj = b⊣}, and Sj =
{i ∈ [1, j) | aj = b⊣, ai = b⊢}.

3. epsilon≺(A): every two actions ai and aj in ≺ with j < i
are ϵ-separated if they are mutex or different copies of the
same action:

ai > 0 → (ti ≥ tj + ϵ).

Further, for every two actions ai and aj starting respec-
tively b and b′, if the starting or ending action of b is mu-
tex with the starting or ending action of b′:

ai > 1 → (ti ≥ tj + dj ∨ tj ≥ ti + di∨
aj = 1 ∧ ti ≥ tj ∧ ti + di ≤ tj + dj).

This formula ensures that the start/end actions of b′ are
not executed during the multiple consecutive executions
of b, thereby guaranteeing ϵ-separation.



4. noOverlap≺(A): for each durative action b, each start-
ing action ai = b⊢ in ≺ can be executed only after the
previous executions of b ended:

ai > 0 →
∧

j∈Bi
(ti ≥ tj + dj),

where Bi = {j ∈ [1, i) | ai = b⊢, aj = b⊢}.
5. lasting≺(A): for each durative action b with pre(b⊢⊣) ̸=

∅, and for each action ai = b⊢ in ≺:
(a) The preconditions of b⊢⊣ must be satisfied in each (con-

secutive) execution of b, i.e., for each v = ⊥, w = ⊤,
ψ ⊵ 0 in pre(b⊢⊣) (Theorem 1):

ai > 0 → ¬σi(v) ∧ σi(w) ∧ σi−1(ψ[1, b
⊢, 0, b⊣])⊵ 0,

ai > 1 → σi−1(ψ[ai, b
⊢, ai − 1, b⊣])⊵ 0.

(b) For each action aj in ≺ mutex with b⊢⊣,
i. if j < i, then aj cannot be executed after ai:

ai > 0 → ti ≥ tj ,

and, when aj is a starting action, also:

ai > 0 ∧ aj > 1 → ti ≥ tj + dj .

These formulas ensure that b does not start until all
executions of aj happened.

ii. if j > i and aj is executed before b ends, then (i) no
rolling takes place:

t0 + ϵ ≤ tj < ti + di → ai ≤ 1 ∧ aj ≤ 1,

and (ii) aj has to maintain the preconditions of b⊢⊣,
i.e., for each v = ⊥, w = ⊤, ψ ⊵ 0 in pre(b⊢⊣):

t0+ϵ ≤ tj < ti+di → ¬σj(v)∧σj(w)∧σj(ψ)⊵0.

Example (cont’d). For pr⊢
i,j (resp. nc⊢

k ), let t⊢i,j (resp. t⊢k )
be the associated time variable, and analogously for the end-
ing actions. If we further assume that when executed, the du-
rations di,j and dk of pri,j and nck are 1 and 5 respectively,
the temporal pattern encoding entails:

nc⊢
k = 0 → dk = 0,nc⊢

k = 1 → dk = 5,pr⊢
i,j = di,j ,

nc⊢
k = nc⊣

k , pr⊢
i,j = pr⊣

i,j , ¬(t⊢i,j ≤ t⊣i < t⊢i,j + di,j),
pr⊢

i,j > 0 ∧ nc⊢
i = 1 → t⊢i,j ≥ t⊢i + ϵ.

The formulas in the 3 lines respectively say that (i) uncap-
ping a bottle takes 5s and pouring p litres takes p seconds,
(ii) any started durative action has to be ended and it is
not possible to cap a bottle while pouring from it, and (iii)
we can start pouring from a bottle after ϵ time since we un-
capped it. Similar facts hold for the destination bottles.

Correctness and Completeness Results
Let ≺ = a1; a2; . . . ; ak, k ≥ 0, be a pattern. Though the
pattern ≺ can correspond to any sequence of starting/ending
actions of a durative action in A, it is clear that it is pointless
to have (i) an ending action b⊣ without the starting action
b⊢ before b⊣ in ≺; similarly (ii) a starting action b⊢ which
is not followed by the ending action b⊣, and (iii) two con-
secutive occurrences of the same starting (ending) action in

the pattern. In such cases, the pattern can be safely simpli-
fied by eliminating such actions. On the other hand, it makes
sense to consider patterns with non consecutive occurrences
of the same starting/ending action. Assuming b1 and b2 are
two durative actions with b⊢1/b

⊣
1 mutex with b⊢2 , it might be

useful to have a pattern including b⊢1 ; b
⊣
1 ; b

⊢
2 ; b

⊢
1 ; b

⊣
1 to allow

two executions of b1, or b1 to start/end before/after b2 starts.
No matter how ≺ is defined, the ≺-encoding Π≺ of Π (with
bound 1) is correct, where

Π≺ = I(X ) ∧ T≺
s (X ,A≺,X ′) ∧ T≺

t (A≺, T ≺) ∧G(X ′), (2)

in which I(X ) and G(X ′) are formulas encoding the initial
state and the goal conditions. To any model µ of Π≺ we as-
sociate the valid temporal plan π whose durative actions are
started by the actions ai in ≺ with µ(ai) > 0. Specifically, if
ai = b⊢, in π we have µ(ai) consecutive executions of b, i.e.,
one timed durative actions ⟨t, ⟨b⊢, b⊢⊣, b⊣, d⟩⟩ for each value
of p ∈ [0, µ(ai)). The (p + 1)-th execution of b happens at
the time t and has duration d such that

t = µ(ti) + p× (d+ ϵb), (d+ ϵb)× µ(ai) = µ(di) + ϵb.

Completeness is guaranteed once we ensure that the se-
quence π� of the starting/ending actions of a valid temporal
plan π, listed according to their execution times, is a sub-
sequence of the pattern used in the encoding. This can be
achieved by starting with a complete pattern, and then re-
peatedly chaining it till Π≺ becomes satisfiable. Formally, a
pattern ≺ is complete if for each durative action b ∈ A, b⊢
and b⊣ occur in ≺. Then, we define ≺n to be the sequence of
actions obtained concatenating ≺ for n ≥ 1 times. Finally,
Π≺

n is the pattern ≺-encoding of Π with bound n, obtained
from (2) by considering ≺n as the pattern ≺.

Theorem 2. Let Π be a temporal numeric planning prob-
lem. Let ≺ be a pattern. Any model of Π≺ corresponds to a
valid temporal plan of Π (correctness). If Π admits a valid
temporal plan and ≺ is complete, then for some n ≥ 0, Π≺

n
is satisfiable (completeness).

Proof (hint). Correctness: Let µ be a model of Π≺ and π its
associated plan. The ϵ-separation axioms ensure that the rel-
ative order between mutex actions in π and in ≺ is the same.
The pattern state encoding ensures that executing sequen-
tially the actions in π starting from I leads to a goal state.
The axioms in the pattern time encoding are a logical formu-
lation of the corresponding properties for the validity of π.
Completeness: Let π be a valid temporal plan with n dura-
tive actions. Let ≺π be the pattern consisting of the starting
and ending actions in π listed according to their execution
times. The formula Π≺π is satisfied by the model µ whose
associated plan is π. For any complete pattern ≺, ≺π is a
subsequence of ≺2×n and Π≺

2×n can be satisfied by extend-
ing µ to assign 0 to all the action variables not in ≺π .

Notice that when two actions a and a′ are not in mutex and
one is not the starting/ending action of the other, the pattern
does not lead to an ordering on their execution times. For
this reason, we may find a valid plan π for Π even before
≺n becomes a supersequence of π�, π� defined as above.



Coverage (%) Time (s) Bound (Common)
Domain PATTYT ANMLSMT ITSAT LPG OPTIC TFD PATTYT ANMLSMT ITSAT LPG OPTIC TFD PATTYT ANMLSMT ITSAT
Temporal 9 4 2 1 4 0 6 1 0 0 3 0 10 0 0
CUSHING 100.0 30.0 - - 100.0 10.0 1.70 235.35 - - 3.12 270.02 3.00 11.33 -
POUR 95.0 5.0 - - - - 46.51 285.96 - - - - 2.00 15.00 -
SHAKE 100.0 50.0 - - - - 1.11 155.15 - - - - 2.00 9.50 -
PACK 60.0 5.0 - - - - 154.72 285.00 - - - - 1.00 6.00 -
BOTTLES 10.0 5.0 - - - - 284.28 286.36 - - - - 7.00 18.00 -
MAJSP 85.0 50.0 - - - - 90.54 154.02 - - - - 8.40 15.00 -
MATCHAC 100.0 100.0 100.0 - 100.0 - 2.20 0.46 0.71 - 0.01 - 3.85 10.00 4.00
MATCHMS 100.0 100.0 100.0 - 100.0 - 1.22 0.43 0.68 - 0.01 - 3.60 10.00 4.00
OVERSUB 100.0 100.0 - 100.0 100.0 - 1.02 0.05 - 0.08 0.01 - 1.00 4.00 -
PAINTER 35.0 45.0 - - 10.0 - 211.69 194.67 - - 270.03 - 2.40 16.80 -

Table 1: Comparative analysis. A “-” indicates that no result was obtained in our 300s time limit, either due to a timeout or an
issue with the planner. The best results are in bold.

Example (cont’d). Assume all q ≥ 2 × p bottles are ini-
tially capped and that the bottles in [1, p] contain < dk = 5
litres. Then, Π≺ is satisfiable and a valid plan is found with
one call to the SMT solver. Notice that in the pattern (1),
the ending action pr⊣

i,j of the pouring actions are after the
ending action nc⊣

k that caps the bottle. However, such two
actions are not in mutex and our pattern time encoding does
not enforce t⊣i,j > t⊣k , making it possible to solve the problem
with a bound n = 1. On the other hand, if one bottle con-
tains 5 litres, Π≺ is unsatisfiable because of ϵ-separation
between the actions of uncapping and pouring from it, mak-
ing it impossible to pour 5 times before the bottle is capped
again. This problem is solved having ≺n with n = 2. More
complex scenarios may require ≺n with higher values for n.

Experimental Results
Table 1 presents the experimental analysis on the CUSHING
domain (the only domain with required concurrency in the
last International Planning Competition (IPC) with a tempo-
ral track (Coles et al. 2018)), all the domains and problems
presented in (Panjkovic and Micheli 2023) (last five), and
four new domains covering different types of required con-
currency specified in (Cushing et al. 2007). The first new do-
main, POUR, is similar to the motivating example of this pa-
per. SHAKE allows emptying a bottle by shaking it while un-
capped. PACK calls for concurrently pairing two bottles to-
gether to be packed. The domain BOTTLES puts together all
the actions and characteristics of the three aforementioned
domains. Of these 10 domains, only POUR and BOTTLES,
contain actions eligible for rolling.

The analysis compares our system PATTYT implemented
by modifying the planner PATTY (Cardellini, Giunchiglia,
and Maratea 2024) and using the SMT-solver Z3 v4.8.7
(De Moura and Bjørner 2008); the symbolic planners AN-
MLSMT (which corresponds to ANMLOMT

INC (OMSAT) in
(Panjkovic and Micheli 2023)) and ITSAT (Rankooh and
Ghassem-Sani 2015); and the search-based planners OPTIC
(Benton, Coles, and Coles 2012), LPG (Gerevini, Saetti,
and Serina 2010) and TEMPORALFASTDOWNWARD (TFD)
(Eyerich, Mattmüller, and Röger 2012). ANMLSMT and
OPTIC have been set in order to return the first valid plan
they find. To use ANMLSMT, we manually converted the
domains in PDDL 2.1 to the ANML language (Smith, Frank,
and Cushing 2008). The experiments have been run using

the same settings used in the Numeric/Agile Track of the
last IPC, with 20 problems per domain and a time limit of 5
minutes. Analyses have been run on an Intel Xeon Platinum
8000 3.1GHz with 8 GB of RAM. In the table we show: the
percentage of solved instances (Coverage); the average time
to find a solution, counting the time limit when the solution
could not be found (Time); the average bound at which the
solutions were found, computed on the problems solved by
all the symbolic planners able to solve at least one problem
in the domain (Bound). The value of the bound coincides
with the number of calls to the SMT solver. Each pattern ≺
is computed only once using the Asymptotic Relaxed Plan-
ning Graph, introduced in (Scala et al. 2016a) and already
used in (Cardellini, Giunchiglia, and Maratea 2024). 1

From the table, as expected PATTYT finds a solution with a
bound always lower than the ones needed by the other sym-
bolic planners. This allows PATTYT to have the highest cov-
erage in 9 out of 10 domains (compared to the value 4 for
the second best). The Painter domain is the only one where
PATTYT has a lower coverage than ANMLSMT. ANMLSMT
is a symbolic planner exploiting the standard encoding. Al-
though it requires a higher bound to find a valid plan also
in Painter, ANMLSMT encoding has 2490 mostly Boolean
variables (action and most state variables are Boolean),
while our encoding has 2058 mostly numeric variables (the
only Boolean variables are in X and X ′). In the other do-
mains, the ratio between the number of variables used by
ANMLSMT and PATTYT is 0.16 on average, which provides
an explanation of PATTYT’s highest coverage and better per-
formance on 9/10 and 6/10 domains, respectively. Overall,
PATTYT is able to solve 157 out of the 200 considered prob-
lems, compared to the 98 of the second best.

Conclusion
We extended the SPP approach proposed in (Cardellini,
Giunchiglia, and Maratea 2024) to the temporal numeric
setting. We proved its correctness and completeness, and
showed its benefits on various domains with required con-
currency. As expected, all the problems have been solved by
PATTYT with a bound lower than the one needed by the other
planners based on planning as satisfiability.

1PATTYT and the PDDL 2.1 and ANML encoding of the new
domains are available at https://github.com/matteocarde/patty .
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