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Abstract. The rehabilitation scheduling process consists of planning
rehabilitation physiotherapy sessions for patients, by assigning proper
operators to them in a certain time slot of a given day, taking into account
several requirements and optimizations, e.g., patient’s preferences and
operator’s work balancing. Being able to efficiently solve such problem is
of upmost importance, in particular after the COVID-19 pandemic that
significantly increased rehabilitation’s needs.
In this paper, we present a solution to rehabilitation scheduling based
on Answer Set Programming (ASP), which proved to be an effective
tool for solving practical scheduling problems. Results of experiments
performed on both synthetic and real benchmarks, the latter provided
by ICS Maugeri, show the effectiveness of our solution.

1 Introduction

The rehabilitation scheduling process [17–19, 24] (RSP) consists of planning pa-
tients’ physiotherapy sessions inside a rehabilitation institute. Hospitals that
may profitably make a practical use of such scheduling, including those man-
aged by ICS Maugeri5 that will provide benchmarks in this paper, deal with up
to hundreds of patients with a team of just few tens of physiotherapists; so, it is
of paramount importance to be able to assign patients to operators efficiently. A
recent article [9] found that 2.41 billion people could benefit from rehabilitation
services. This finding means that almost one third of the people in the world
needs rehabilitation at some point during the course of their disease or injury;
further, this number is predicted to trend upward given the current demographic
and health shifts. In addition, there is emerging evidence that many of the peo-
ple affected by the COVID-19 pandemic have long-term consequences regardless
of the disease severity or length of hospitalisation, thus further increasing the
demand for rehabilitation services globally.

? Corresponding author.
5 https://www.icsmaugeri.it/.
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The RSP is subject to several constraints, i.e., legal, medical and ethical, that
need to be taken into consideration in order to find a viable schedule. For exam-
ple, the main constraints that have to be dealt with are the maximum capacity
of rehabilitation gyms, the legal working time and rest periods for operators, and
the minimum durations of physiotherapy sessions. Moreover, several preferences
shall be considered, e.g., due to clinical and organizational reasons it is often
best for the patient to be treated as often as possible by the same operator and
defined slots for the rehabilitation sessions are to be preferred; also rehabilitation
professionals’ work balancing needs to be taken into proper account.

In this paper, we present a solution to the RSP based on Answer Set Pro-
gramming (ASP) [16, 20, 6, 7], which proved to be an effective tool for solving
practical scheduling problems [15, 22, 10, 4], thanks to efficient solvers (such as
clingo [13] and wasp[1]; see, e.g., [14] for an overview). The solution is de-
signed as a two-phase encoding (Section 3): The first phase, called board, deals
with the problem of assigning a physiotherapist to every patient considering the
total working time of the physiotherapist and the minimum mandatory time of
rehabilitation sessions. In the second phase, called agenda, a start and end time
of every rehabilitation session is defined given the assignments between patients
and physiotherapists found in the first phase. Our two-phase solution is not guar-
anteed to find the best possible overall solution, but has been designed in this
way because: (i) it simplifies the overall encoding and its practical use, and (ii)
it mimics how schedules have been computed so far (in a non-automatic way) in
ICS Maugeri and gives freedom to physiotherapists’ coordinators to perform any
desired manual change to the board, before planning the agenda. We first tested
our encoding (Section 4) on real benchmarks from ICS Maugeri related to the
daily scheduling of neurological patients from two of their rehabilitation insti-
tutes in the North of Italy, namely Genova Nervi and Castel Goffredo: Results
using the ASP solver clingo [13], focused on understanding the percentage of
the real benchmarks in which no solution can be found in very short time, i.e.,
much shorter than in production, show that this happens approximately for only
less than one third of the instances. Then, given that ICS Maugeri is planning
to instrument with automated techniques other, possibly larger, institutes in
addition to Genova Nervi and Castel Goffredo, we generated a wide set of syn-
thetic benchmarks, whose parameters are inspired by the real data. We made
a wide experimental evaluation, and statistically confronted these results with
those with real data using classification decision tree methods [21], with the aim
of predicting the behavior of our solution on such larger institutes. Results show
that the accuracy is high, so our synthetic benchmarks look significant to indi-
cate a possible behavior on real data coming from other institutes with other
parameters. Moreover, our analysis also outlined what are the features of the
problems that affect the results mostly. The paper is then completed by problem
description in Section 2, and related work discussion and conclusions in Section
5.
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2 Problem description

The delivery of rehabilitation services is a complex task that involves many
healthcare professions such as physicians, physiotherapists, speech therapists,
psychologists and so on. In particular, physiotherapists spend most of their time
with the patients and their sessions constitute the core of the daily agenda of
the patient, around which all other commitments revolve. For this reason, this
article is focused on scheduling the physiotherapy sessions in the most efficient
way, optimising the overall time spent with the patient.

The agenda for the physiotherapy sessions is computed by the coordinator
of the physiotherapists. This process is repeated on a daily basis in order to
take into account any change in the number and type of patients to be treated,
the number of operators available, and, until recently, it has been performed
manually, without any automation. In the following, the main elements and
constraints of the problems are described.

The usual scheduling practice, entails two subsequent phases resulting in the
computation of a board and an agenda, that we herewith describe. In short, the
first phase, called board, deals with the problem of assigning a physiotherapist
to every patient, keeping track of the total working time of the operator and the
minimum mandatory time of rehabilitation sessions. In the second, consequential
phase, called agenda, a start and end time of every rehabilitation session is
searched given the assignments between patients and operators found in the
first phase.

Going more in details, in the board phase, the working hours of operators
are simplified by counting their total working time, in minutes, and assigning
patients to each operator in order to keep the cumulative time of all the sessions
in which the operators are involved underneath their total working time. In this
phase, patient-operator assignment preferences, expressed by the coordinator be-
fore the start of the scheduling procedure, are taken into account and respected
as far as possible. In the agenda phase, given an assignment found by the board,
every patient-operator session is assigned a starting and ending time, respecting
the more granular working hours of the operators and the times in which the
patients are unavailable. At this stage, the location in which the rehabilitation
session is performed, is also considered: a gym is assigned to every session, keep-
ing into consideration the maximum number of simultaneous sessions allowed
inside the gym. The choice of the gym has also to be made between a subset
of gyms that are located at the same floor of the room of the patient in order
to avoid elevators and stairs that can result in discomfort to patients and can
quickly congest the hospital. In this phase, time preferences for each patient are
also considered: in fact, plans in which the sessions are performed nearer the
desired time of the patients are preferred to the others.

In the next paragraphs, we describe more in details the main elements of our
encoding, namely patients, operators and sessions, as well as the constraints and
preferences entailed by the board and agenda phases.

Patients. Patients are characterized by their:
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– type (Neurological, Orthopaedic, Alcoholic, COVID-19 Positive, COVID-19
Negative, Outpatient),

– aid needs, i.e., if they need specific care or not,
– payment status (full payer or in charge of the National Healthcare Service),
– forbidden times, i.e., the time intervals when the patient cannot be scheduled,
– ideal time, i.e., the preferred scheduled time expressed by the coordinator,
– preferred operators, i.e., the list of physiotherapists, ordered by priority, the

patient can be assigned to,
– overall minimum length, i.e., the minimum amount of care time that the

patient is guaranteed to be scheduled,
– sessions, i.e., the list of sessions to be scheduled.

Operators. Physiotherapists, that will be called operator from now on, are char-
acterized by their:

– qualifications, i.e., patient’s types which the operator can treat,
– operating times, i.e., the part of the operator’s working times dedicated

to the direct care of the patients. The operating times are usually split in
morning and afternoon shifts.

Sessions. The coordinator, in accordance with the rehabilitation program set by
the physician, determines the daily activities of the patient. These activities can
be performed in one or two therapy sessions, in the latter case one session will
be scheduled in the morning and the other in the afternoon shift.

Each session can be delivered to patients either by individualized (“one-on-
one” sessions) or supervised (one therapist supervising more patients at the
same time, each patient carrying out their personal activity independently).
It must be noted that, while operators are delivering one-on-one therapy to
patients, they can supervise other patients but cannot deliver one-to-one therapy
to another patient. When the operators are particularly overbooked, their one-to-
one sessions can be partially converted to supervised ones. These mixed sessions
can either start with a supervised part and then continue with the one-on-one
part, or vice-versa, or even start and end with a supervised part with a middle
one-on-one session. Obviously, an operator can supervise different patients only
if their sessions are located at the same place. The characteristics are:

– delivery mode (one-on-one, supervised),
– minimum one-on-one length, i.e., the minimum length of the session guar-

anteed to be delivered one-on-one,
– ideal overall length, i.e., the overall length of the session including the one-

on-one and supervised parts,
– optional status, i.e., if the session can be left out of the schedule in case of

overbooked operators,
– forced time, i.e., the time when the session must be scheduled; if empty, the

session is placed as close as possible to the patient’s preferred time,
– location, i.e. the place where the session must be delivered.
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Board. In the board phase all patients are assigned to an available operator,
according to the following criteria:

– compatibility between patient and operator, depending on the patient’s type
and operator qualifications, the patient’s forced time, if any, and the operator
working times, by also checking if the operator has enough time to provide
the guaranteed overall minimum length and minimum one-to-one length to
each patient and session,

– forced assignments of a patient to an operator: In special cases, the coor-
dinator can override the preferred operators list and force an assignment
regardless of all other considerations,

– the patients should be fairly distributed among all available operators, taking
into account their type, aid needs and payment status,

– the patients should be assigned to the operators respecting as much as pos-
sible their preferred operators list, which considers primarily the choices of
the coordinator and secondarily the history of the past assignments.

Agenda. The results of the board phase can be revised and, if necessary, manually
modified by the coordinator. Once the coordinator is satisfied with the board,
it is possible to proceed to the agenda scheduling, using the approved board as
input data. The criteria for the agenda phase are:

– compliance with the forced time of the session, if specified,
– two sessions of the same patient must be assigned in different shifts,
– compliance with the minimum one-on-one length of the session,
– no overlap between two one-on-one sessions (or their one-on-one sections if

the sessions are mixed) assigned to the same operator,
– observance of the maximum capacity of the locations (1 for each room, vary-

ing for the gyms),
– respect of the overall minimum length of the patient,
– respect of the one-on-one minimum session length,
– compliance with the forbidden times of the patient,
– sessions can only be scheduled within the working times of the operator,
– the start time of each session should be as close as possible to the preferred

time, either specified by the coordinator or inferred from previous schedules,
– for mixed sessions, the one-on-one part should be maximized,
– the largest possible number of optional sessions should be included,
– the overall length, including the one-on-one and supervised parts in case

of mixed sessions, should be as close as possible to the ideal overall length
specified by the coordinator.

3 A Two-Phase ASP Encoding

In the following, we assume the reader is familiar with syntax and semantics of
ASP. Starting from the specifications in the previous section, here we present the
ASP encoding, based on the input language of clingo [11]. For details about
syntax and semantics of ASP programs, we refer the reader to [8].
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3.1 Board encoding

Data Model. The input data is specified by means of the following atoms:

– Instances of patient(P), operators(O), and type(T) represent the identi-
fiers of patients, operators, and the different types of patients that can be vis-
ited, respectively, where P and O are numbers, whereas T can be: neurologic,
neurologic-lifter, orthopaedic, orthopaedic-lifter, covid-19-positive, covid-19-
negative, or outpatient. Moreover, a fictitious operator with ID equals to -1
is included in the list of all the operators, and it is needed to intercept all
patients that cannot be assigned to other operators.

– Instances of operator contract(ID,TIME,MAX) represent the contract of
the operator with the identifier ID, and include the quantity of time (in time
units) the operator works in a day (TIME), and the maximum number of
patients the operator can visit during the day (MAX).

– Instances of operator limit(ID,T,VALUE) represent the maximum number
of patients (VALUE) of type T the operator with identifier ID can visit. The
operator with ID equals to -1 has no patients limits.

– Instances of patient data(ID,T,MIN) represent the data associated to the
patient with the identifier ID, and include the type of the patient (T), and
the minimum cumulative time of all sessions of the patient during the day
(MIN).

– Instances of patient session(ID,MIN,LOC) represent a rehabilitation ses-
sion that the patient with identifier ID needs to perform during the day. The
session is characterized by a minimum length for the session in time units
(MIN), and the location of the session (LOC).

– Instances of patient preference(ID,OP,W) represent the preference of the
patient with identifier ID to be treated by the operator with identifier OP,
where W specifies the weight of the preference.

– Similarly, instances of history preference(ID,OP,W) represent the prefer-
ence of the patient based on the history of previous sessions.

The output is an assignment represented by atoms of the form assignment(OP,

PAT) stating that the patient PAT will be treated by the operator OP.

Encoding. The related encoding is shown in Figure 1, and is described in the
following. To simplify the description, the rule appearing at line i in Figure 1
is denoted with ri. Rule r1 ensures that each patient is assigned to exactly one
operator. Rules r2 and r3 are used to define if the session between a patient
and an operator will be performed individually in a single location (r2), or it
will be executed in the same location of another session (r3). Rule r4 ensures
that the time required by the patients assigned to an operator does not exceed
the maximum time of her/his contract. Rule r5 ensures that each operator does
not exceed the maximum number of patients to visit during the day. Rule r6 is
similar to the previous one, but in this case the limits are imposed according to
the type of the patient.
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1 {assignment(OP, PAT) : operator(OP)} = 1 :- patient(PAT).
2 uniqueLocationLength(OP,PAT,DUR) :- assignment(OP,PAT), patient_session(PAT,_,LOC),

patient_data(PAT,_,DUR), #count{ID:patient_session(ID,_,LOC), assignment(OP,ID)} < 2.
3 sameLocationLength(OP,PAT,DUR) :- assignment(OP,PAT), patient_session(PAT,DUR,LOC),

#count{ID:patient_session(ID,_,LOC), assignment(OP,ID)} > 1.
4 :- operator_contract(OP,TIME,_), #sum{U,PAT:uniqueLocationLength(OP,PAT,U); S,

PAT:sameLocationLength(OP,PAT,S)} > TIME.
5 :- operator_contract(OP,_,N), #count{PAT:assignment(OP,PAT)} > N.
6 :- operator_limit(OP,T,N), #count{PAT:assignment(OP,PAT), patient_data(PAT,T,_} > N.
7 :∼ #sum{W, PAT:assignment(OP,PAT), patient_preference(PAT,OP,W)} = N. [N@3]
8 :∼ #count{PAT: assignment(-1, PAT)} = N. [N@2]
9 :∼ #sum{W, PAT:assignment(OP,PAT), history_preference(PAT,OP,W)} = N. [N@1]

Fig. 1. ASP Encoding for the allocation problem.

Weak constraints from r7 to r9 are then used to provide preferences among
different assignments. In particular, r7 is used to maximize the assignments that
fulfil the preferences of each patient. Then, r8 is used to minimize the number
of patients that are assigned to the fictitious operator. Finally, r9 is used to
maximize the solutions that preserve assignments dictated by the history of
previous sessions.

3.2 Agenda encoding

Data Model. The following atoms constitute the input data:

– Instances of patient(ID,MIN) represent a patient identified by ID, and a
minimum rehabilitation session of MIN length in time units that the patient
has to undertake during the day.

– Instances of period(PER,OP,STA,END) define the start (STA) and end (END)
time in the period PER (which can be morning or afternoon), which corre-
sponds to the shift, of the operator with identifier OP.

– Instances of time(PER,OP,T) define the time slots (T) during the period PER

where the operator OP works. In particular, T ranges from STA to END defined
for instances of period(PER,OP,STA,END).

– Instances of location(ID,CAP,PER,STA,END) represent a location, with an
identifier ID, a maximum capacity of CAP, and during the period PER is open
from the time unit STA until END.

– Instances of macro location(MLOC,LOC) define that the location LOC is in-
side the macro-location MLOC.

– Instances of session(ID,PAT,OP) represent a session between the patient
PAT and the operator OP, coming from the assignment(OP,PAT) output of
the board phase to which a unique ID is added (to discriminate between
morning and afternoon shifts).

– Instances of session type(ID,OP,TYPE) represent that the session with
identifier ID assigned to operator OP is of type TYPE (which can be indi-
vidual or supervised).
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– Instances of session macro location(ID,MLOC) represent that the session
with identifier ID has to be held in the macro-location MLOC.

– Instances of session length(ID,MIN,IDEAL) represent that the session ID

has a minimum length (MIN) that has to be performed in individual, and an
ideal length (IDEAL) that would be beneficial to the patient, but it is not
mandatory to perform.

– Instances of mandatory session(ID) and optional session(ID) identify
sessions that are mandatory and optional, respectively.

– Instances of forbidden(PAT,PER,STA,END) represent an unavailability of
the patient PAT in the period PER from the time unit STA to END.

– Instances of session preference(ID,PER,START,TYPE) represent the pref-
erence of the patient, stating that session should be held during the period
PER and it must start at the time unit START, where TYPE indicates if the
preference is high or low.

The output is represented by atoms start(ID,PER,T), length(ID,PER,L),
and session location(SES,LOC), which indicate the start, length and location
of each session, respectively.

Encoding. In Figure 2 the encoding for the agenda is presented.
Rules r1 and r2 assign a start time to every session; for the optional session,

the start atom can be unassigned. Rule r3 defines a length for all the sessions:
the session length cannot be lower than the minimum time of the session and
cannot be greater than the ideal time the session should take. Rule r4 assigns
a location for each session. Rules r5 and r6 reserve to each session slots of time
before it starts and after it ends, in which the session can be performed in a su-
pervised fashion. These extensions cannot be longer than the difference between
the maximum and the minimum length of the session.

Then, rules r7 and r8 define auxiliary atoms ext start and ext length using
the slots of times reserved for the extensions. Rule r9 defines an auxiliary atom
of the form individual session location(ID,LOC,OP,MIN,IDEAL) which rep-
resents that an individual session ID is in the location LOC, is assigned to the
operator OP, and its minimum and ideal lengths are equal to MIN and IDEAL, re-
spectively. Rule r10 defines session time(ID,OP,PL,PER,T) which states that
during time T of period PER the session ID is being performed by operator OP.

Rule r11 states that two individual assignments shall not overlap. Rule r12
imposes that each patient is assigned to at most one session per period. Rules r13
trough r15 impose that the optional individual time (i.e., the difference between
the minimum length of the session and the planned length) is added fairly to
all individual sessions, starting with shorter ones. Rule r16 imposes that for
each time slot, the operator is not in two different places. Rule r17 states that
patients must have their minimum time reserved. Rule r18 imposes a limit on the
concurrent use of locations with limited capacity. Rules r19 trough r21 impose
that a session cannot happen during a forbidden time. Rule r22 avoids that,
during a time slot, the distribution of sessions between each pair of locations
inside the same macro location is unfair (i.e., a location is at its full capacity
while another is empty).
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1 {start(ID,PER,TS) : time(PER,OP,TS)} = 1 :- session(ID,_,OP), mandatory_session(ID).
2 {start(ID,PER,TS) : time(PER,OP,TS)} <= 1 :- session(ID,_,OP), optional_session(ID).
3 {length(ID,PER,NL) : time(PER,OP,L), NL=L-ST, TS+NL <= END, NL>= MIN, NL<= IDEAL} = 1 :-

start(ID,PER,TS), period(PER,OP,ST,END), session(ID,_,OP),
session_length(ID,MIN,IDEAL).

4 {session_location(ID,LOC): macro_location(MAC,LOC)} = 1 :- session_macro_location(ID,MAC).
5 {before(ID,NL): time(PER,OP,L), NL=L-ST, NL<=TS-ST} = 1 :- start(ID,PER,TS),

period(PER,OP,ST,_), session(ID,_,OP).
6 {after(ID,NL): time(PER,OP,L), NL=L-ST, NL<=END-TS-LEN} = 1 :- start(ID,PER,TS),

period(PER,OP,ST,END), length(ID,PER,LEN), session(ID,_,OP).
7 ext_start(ID,PER,TS-LB) :- start(ID,PER,TS), before(ID,LB).
8 ext_length(ID,PER,L+LA+LB) :- length(ID,PER,L), after(ID,LA), before(ID,LB).
9 individual_session_location(ID,LOC,OP,MIN,IDEAL) :- session_type(ID,OP,individual),

session_location(ID,LOC), session_length(ID,MIN,IDEAL).
10 session_time(ID,OP,PL,PER,TS..TS+L-1) :- session(ID,_,OP), session_location(ID,PL),

ext_start(ID,PER,TS), ext_length(ID,PER,L).
11 :- start(ID,PER,TS), length(ID,PER,L), session_type(ID,OP,individual), start(ID2,PER,TS2),

session_type(ID2,OP,individual), ID!=ID2, TS2>=TS, TS2<TS+L.
12 :- session(ID1,PAT,_), session(ID2,PAT,_), start(ID1,PER,_), start(ID2,PER,_), ID1!=ID2.
13 :- individual_session_location(ID1,LOC,OP,MIN1,OPT1), length(ID1,PER,L1),

individual_session_location(ID2,LOC,OP,MIN2,OPT2), length(ID2,PER,L2), OPT1-L1 <=
OPT2-MIN2, OPT2-L2 <= OPT1-MIN1 , |OPT1 -L1 - OPT2 + L2| > 1.

14 :- individual_session_location(ID1,LOC,OP,MIN1,OPT1), length(ID1,PER,L1),
individual_session_location(ID2,LOC,OP,MIN2,OPT2), length(ID2,PER,L2), OPT1-L1 >
OPT2-MIN2, L2 > MIN2.

15 :- individual_session_location(ID1,LOC,OP,MIN1,OPT1), length(ID1,PER,L1),
individual_session_location(ID2,LOC,OP,MIN2,OPT2), length(ID2,PER,L2), OPT1-L1 <=
OPT2-MIN2, OPT2-L2 <= OPT1-MIN1, OPT2 < OPT1, OPT1-L1 < OPT2-L2.

16 :- session_time(ID,OP,PL,PER,T), session_time(ID2,OP,PL2,PER,T), ID != ID2, PL != PL2.
17 :- patient(PAT,MIN), #sum{LEN, ID: session(ID,PAT,_), ext_length(ID,_,LEN)} < MIN.
18 :- location(LOC,LIM,PER,ST,END), LIM>0, time(PER,_,T), T>=ST, T<END, #count{ID:

session_time(ID,_,LOC,PER,T)} > LIM.
19 :- forbidden(PAT,PER,ST,_), session(ID,PAT,_), ext_start(ID,PER,TS), ext_length(ID,PER,L),

ST>=TS, ST<TS+L.
20 :- forbidden(PAT,PER,_,END), session(ID,PAT,_), ext_start(ID,PER,TS), ext_length(ID,PER,L),

END>TS, END<=TS+L.
21 :- forbidden(PAT,PER,ST,END), session(ID,PAT,_), ext_start(ID,PER,TS),

ext_length(ID,PER,L), ST<=TS,END>TS.
22 :- time(PER,_,T), macro_location(MAC,LOC1), macro_location(MAC,LOC2),

#sum{1,ID1:session_time(ID1,_,LOC1,PER,T); -1,ID2:session_time(ID2,_,LOC2,PER,T)} > 2.
23 :∼ length(ID,_, L), session_length(ID,MIN,IDEAL), D=|L-IDEAL|. [D@6, ID]
24 :∼ start(ID,PER,_), session_type(ID,_,individual), session_preference(ID,PER2,_,high),

D=|PER-PER2|. [D@5, ID]
25 :∼ start(ID,PER,TS), session_type(ID,_,individual), session_preference(ID,PER,TS2,high),

D=|TS-TS2|. [D@4, ID]
26 :∼ optional_session(ID), time(PER,_,TS), not start(ID,PER,TS). [1@3,ID]
27 :∼ start(ID,PER,_), session_preference(ID,PER2,_,low), session_type(ID,_,individual),

optional_session(ID), D=|PER-PER2|. [D@2, ID]
28 :∼ start(ID,PER,TS), session_preference(ID,PER,TS2,low), session_type(ID,_,individual),

optional_session(ID), D=|TS-TS2|. [D@1, ID]

Fig. 2. ASP Encoding for the timetable problem.

The weak constraint r23 states that each session duration should be as close
as possible to the ideal duration. Rules r24 and r25 minimize the distance be-
tween the actual and the preferred starting time for the high session priority
preferences. Rule r26 maximizes the number of optional sessions included in the
scheduling. Rules r27 and r28 are similar to r24 and r25, respectively, but for the
low session priority preferences.
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Table 1. Dimensions of the ICS Maugeri’s institutes.

Institute # Operators # Patients Density # Floors # Gyms

Genova Nervi [9,18] [37,67] [2.4,5.2] 1 1

Castel Goffredo [11,17] [51,78] [3.5, 6.4] 2 3

Table 2. Results on ICS Maugeri institutes.

Branch & Bound + RoM Unsatisfiable Core

Genova Nervi Castel Goffredo Genova Nervi Castel Goffredo

Board Agenda Board Agenda Board Agenda Board Agenda

% Optimum 35% 0% 0% 0% 22% 45% 0% 0%

% Satisfiable 65% 100% 100% 67% 78% 55% 100% 70%

% Unknown 0% 0% 0% 33% 0% 0% 0% 30%

Avg Time for opt 1.1s - - - 10s 0.01s - -

Avg Time Last SM 1.3s 30s 5.2s 30s 12.1s 21.3s 10.4s 30s

4 Experimental Analysis

In this section, analyses performed on the two encodings are presented. The
first part of our analysis is performed on real data (that of course can encap-
sulate also forced assignments and timings, and revisions between phases, if
any) coming from the institutes of Genova Nervi and Castel Goffredo; then,
in order to evaluate the scalability of the approach and to analyse how our
solution would behave in larger institutes, an analysis is performed on syn-
thetic instances with increasing dimensions, but considering real parameters.
A comparison between the real and synthetic instances validates the approach
and demonstrates that synthetic instances can reasonably model the problem
at hand. Encodings and benchmarks used in the experiments can be found at:
http://www.star.dist.unige.it/~marco/RuleMLRR2021/material.zip.

Real data. ICS Maugeri utilizes, in its daily activity of scheduling the rehabilita-
tion session of its patients, a web-based software called QRehab [23], developed
by SurgiQ, which is built on top of the specified encoding; thus, analysis can be
performed on real data coming from the institutes of Genova Nervi and Castel
Goffredo which tested and used this software since mid 2020 for Genova Nervi
and the beginning of 2021 for Castel Goffredo. This allowed us to access 290
instances for Genova Nervi and 100 for Castel Goffredo. Table 1 provides an
overview of the dimension of the instances in the two institutes in terms of
number of physiotherapists, number of daily patients, density of patients per
operator, number of floors (i.e., macro-locations) and number of total gyms (i.e.,
locations). In Table 2, the results obtained by the two encodings are presented
in terms of percentage of instances for which an optimal/satisfiable/no solution
is computed. Last two rows report the mean time of instances solved optimally
and of the last computed solution for all satisfiable instances, respectively. The
scheduling was performed using the ASP solver clingo [13] with a cut-off of 30s
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using two different optimization methods: the first is the default Branch&Bound
(BB) optimization method [12] with the option --restart-on-model enabled;
the second instead leverages the Unsatisfiable Core (USC) algorithm [3, 5] with
the clingo options --opt-strategy=usc,k,0,4 and --opt-usc-shrink=bin en-
abled. As it can be seen in Table 2, results are mixed: the USC algorithm per-
forms better in the agenda encoding while BB algorithm is better on the board
scheduling: moreover, 100% of the board instances are solved, while for approxi-
mately one third of the agenda instances a solution can not be found. Considering
these are hard real instances, results are positive and highly appreciated by ICS
Maugeri members.
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Fig. 3. Results of clingo using the BB optimization algorithm (left) and the USC
optimization algorithm (right) on synthetic benchmarks of the board.

Nervi
Castel Go!redo

Optimum Found
Satis"able
Unsatis"able
Unknown

10
20
30
40
50
60
70
80

# 
O

pe
ra

to
rs

50 100 150 200 250 300 350 400

Branch & Bound + Restart On Model

Nervi
Castel Go!redo

Optimum Found
Satis"able
Unsatis"able
Unknown

10
20
30
40
50
60
70
80

# 
O

pe
ra

to
rs

50 100 150 200 250 300 350 400

Unsatis"able Core

#Patients #Patients

Fig. 4. Results of the synthetic benchmarks of the agenda produced by clingo with
the BB optimization algorithm and the option --restart-on-model enabled (left) and
the USC optimization algorithm (right).

Synthetic data. In order to understand how the system scales to larger insti-
tutes, that ICS Maugeri plans to instrument soon with such solution, a simu-
lated approach is needed. For this reason, a generator able to produce random
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instances with features as close as possible to the ones of real hospitals was de-
veloped. Some examples of real data utilized are: the percentage of individual
and supervised sessions, the medium length of operator’s shifts, the occurrence
of forbidden time slots for patients, and the ideal length of sessions. For every
new instance created, each feature was extracted from a random distribution
which was modelled from the real data coming from the hospitals or from the
knowledge of institute administrators and managers. In Figure 3 results of the
scheduling of the board encoding, computed from the synthetic data, are pre-
sented. The x-axis defines the number of patients and the y-axis the number of
operators; white lines represent points in which the density is an integer. Every
pixel of the image depicts the mode of the results of 5 simulations executed with
the corresponding number of patients and operators with a cut-off of 30s using
the BB optimization algorithm and with the --restart-on-model option en-
abled (left) and the USC optimization algorithm (right). The colour of a pixel
thus signals if the majority of instances with that particular number of operators
and patients resulted in: (i) Optimum Found, signalling that the optimal stable
model was found, (ii) Satisfiable, when at least one sub-optimal stable model
was found, but the solution is not guaranteed to be optimal, (iii) Unknown,
if no stable model could be found before the cut-off, (iv) Unsatisfiable, when
no stable model exists which can satisfy all the constraints. As it can be seen
from the figure, the results of the scheduling are directly proportional to the
density (i.e., the average number of patients for every operator), changing from
Optimum Found to Satisfiable when reaching a density of approximatively 2.9
patients per operator. Notably, despite the use of random instances, no instance
results Unsatisfiable since the fictitious operator can always catch the patients
which cannot be assigned to any operator (due to all the operators reaching full
capacity). The position of the hospitals of Genova Nervi and Castel Goffredo are
highlighted with a circle. In this figure it can be noted how the BB gives better
results than USC, by being able to find, before the cut-off, at least a sub-optimal
stable model for instances of higher densities, while, instead, the USC algorithm
returns Unknown.

In Figure 4 the results of the agenda encoding, scheduled with the BB opti-
mization algorithm (left) and USC algorithm (right), are presented in the same
format as the previous experiment. The instances for this experiment are the
same as the previous one, but are augmented with the assignments between pa-
tients and operators found by clingo with the board encoding and other needed
parameters. As previously stated, each pixel represent 5 instances and its color
represents the mode of the clingo results. Here two things can be noted: (i)
unlike the board results, which showed a proportionality with the density, these
results show a correlation only with the number of patients, and (ii) some red
dots scattered in the image indicate that some instances result Unsatisfiable;
this can happen since the random data could create some instances with fea-
tures that cause an impossibility to plan. With the BB optimization algorithm,
the transition between the Optimum Found results and Satisfiability is located
near 40 patients and near 120 patients for the transition between Satisfiability
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and Unknown. As it can be seen in Figure 4 (right), the USC algorithm, instead,
performs better and moves the transition between the Optimum found results
and Satisfiable from 40 to 60 patients but, on the other hand, the transition
between Satisfiable and Unknown slightly decreases from 120 patients to 110.
The improvements on the transition between the Optimum found results and
Satisfiable is very important in our setting, since Genova Nervi and Castel Gof-
fredo fall into this area, confirming the improvements obtained in Table 2. The
loss with USC could be resolved by launching the two algorithms in two differ-
ent threads, so the USC algorithm will perform better on instances with fewer
patients while the BB algorithm will at least return a sub-optimal stable model
for instances with more patients.

Validation of synthetic instances. In order to understand if the simulated in-
stances correctly represent the real data and can be therefore used to predict
the behavior of the system in larger institutes, a validation is needed to compare
the results on real and synthetic instances. Intuitively, we have considered the
data presented in Table 2 and compared it to the result of the instances within
the circles around Genova Nervi and Castel Goffredo in Figures 3 and 4, to check
if they “coincide”. For doing so, a decision tree was trained, taking as dataset
all the features of the simulated instances, some of them listed in the previous
paragraph. Then, a test dataset with features extracted from the real instances
was produced and given as an input to the decision tree, and the predicted result
was then compared to the result given by clingo on the real instances. This
test showed that for the board encoding, all the results on real instances were
equal to the predicted ones for both institutes; the agenda encoding produced
the same results in 93% of the cases for Genova Nervi and in 67% of the cases for
Castel Goffredo, thus showing that overall the synthetic data behaves similarly
as the real one and can be used for predicting the behavior of instances in larger
institutes. Finally, the computed decision trees also confirm what are the most
relevant features outlined above by inspecting the graphs in the figures.

5 Related Work and Conclusions

There have been few attempts to solve rehabilitation scheduling, since most hos-
pitals are still doing it in a manual way. Among the automated solutions, often
they are applied to real world data. However, their results are not directly com-
parable to ours, since their constraints and objective functions are different from
the ones that emerged from our meetings with the physiotherapists and manage-
ment at ICS Maugeri. In particular, to our knowledge, no other solution takes
into account several aspects like the preferred time for the session scheduling and
the preferences in the assignment of the patient to the operator. Huang, Zheng
and Chien [17] developed a system, equipped with a Graphical User Interface,
which can generate the optimal schedules for rehabilitation patients to minimize
waiting time and thus enhance service quality and overall resource effectiveness
of rehabilitation facilities. More recently, Huyinh, Huang and Chien [18] further



14 Cardellini et al.

refined the algorithm in order to develop a hybrid genetic algorithm (GASA)
that integrates genetic algorithm (GA) and simulated annealing (SA). Recently,
Li and Chen [19] designed a genetic algorithm based on Waiting Time Priority
Algorithm (WTPA) which was tested on a rehabilitation department. Schim-
melpfeng, Helber and Kasper [24] developed a decision support system for the
scheduling process based on mixed-integer linear programs (MILPs) to deter-
mine appointments for patients of rehabilitation hospitals, subject to numerous
constraints that are often found in practice. We already mentioned in the in-
troduction that ASP has been already successfully used for solving application
problems in several research areas (see, e.g., [11, 22]), including the Healthcare
domain (see, e.g., [2] for an overview). Differently from this set of papers in
the same domain, the current work designs a two-phase encoding rather than a
direct encoding, and evaluates the solution on real benchmarks.

In this paper, we have presented a two-phase ASP encoding for solving reha-
bilitation scheduling. Our solution has been tested with clingo and both real
and synthetic benchmarks, the former provided by ICS Maugeri while the latter
created with real parameters and employed to understand a possible behavior of
the solution on upcoming institutes where the solution will be employed. Results
are positive for the institutes employed at the moment and give some indications
on the upcoming, e.g., there are few institutes that may fall close to the transition
between satisfiable and unknown instances. Thus, despite the current positive
results, a possible topic for future research is to improve the current encoding, as
well as combining the strengths of the optimizations algorithms employed. An-
other interesting direction is to design also rescheduling solutions, to be applied
in case of unavailability of operators and/or patients.
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