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Abstract. Public railway transport systems play a crucial role in servic-
ing the global society and are the transport backbone of a sustainable econ-
omy. While a significant effort has been devoted to predict inter-station
trains movements to support stakeholders (i.e., infrastructure managers,
train operators, and travellers) decisions, the problem of predicting in-
station movements, while being crucial to improve train dispatching (i.e.,
empowering human or automatic dispatchers), has been far more less inves-
tigated. In fact, stations are the most critical points in a railway network:
even small improvements in the estimation of the duration of trains move-
ments can remarkably enhance the dispatching efficiency in coping with
the increase in capacity demand and with delays. In this work we will first
leverage on state of the art shallow models, fed by domain experts with do-
main specific features, to improve the current predictive systems. Then, we
will leverage on a customised deep multi scale model able to automatically
learn the representation and improve the accuracy of the shallow models.
Results on real-world data coming from the Italian railway network will
support our proposal.

1 Introduction

Rail transport is probably the most sustainable, whether in terms of CO2 emis-
sions, energy consumption, use of space, or noise levels. In Europe the increasing
volume of people and freight transported on railways is congesting the network.
The only viable solution to increase capacity, in the short/medium term, is then
to improve the efficiency in order to be able to control a larger number of running
trains without requiring massive public investments in new physical assets1. For
this reason, in the last years, all the major players of the European railways
grouped together2 and started extensive modernisation programs that leverage
on advanced ICT solutions, Artificial Intelligence (AI)-based especially, to im-
prove system safety and service reliability, to enhance passenger experience, to
provide higher transit capacity, and to reduce operational costs.

In this work, we will focus on the problem of analysing train movements.
The study of train movements has a long history and, in the last 10 years, it has
attracted the interest of both researchers and industry because of the ability of

∗This work has been partially funded by Hitachi Rail STS through the RAIDLab (Railway
Artificial Intelligence and Data Analysis Laboratory), a joint laboratory between Hitachi Rail
STS and University of Genoa.

1https://ec.europa.eu/transport/themes/infrastructure en
2https://shift2rail.org/
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the new generation of AI-based systems to positively impact on the efficiency
of the railway. In particular, a significant effort has been spent in predicting
inter-station trains movements to support railway stakeholders decisions [1, 2]:
infrastructure managers and train operators can better plan the use and the ex-
ploitation of the railway infrastructure, while travellers can be informed timely of
congestion and delays. Much less effort has been spent in studying the in-station
movements because of the complexity in retrieving the related fine-grained data.
In fact, the vast majority of trains are not equipped with a Global Positioning
System (GPS) and usually their position is known in the so called points of
measure [1, 3]. To analyse the in-station train movements it is required to re-
trieve fine-grained data from the interlocking system which is able to register the
block section occupations [3]. Unfortunately, these data are seldomly available.
Nevertheless, the ability to accurately predict the duration of trains movements
is crucial for improving the in-station train dispatching [4–6]. Train dispatching
(both human- or AI-based), in fact, requires accurately predicting the duration
of trains movements to efficiently cope with the increase in capacity demand and
with delays.

In this work we will adopt a two step approach to address the problem of
predicting the duration of in-station train movements (Section 2). We will first
leverage on state of the art shallow models based on Random Forests (RF) [7],
fed by domain experts (i.e., operators of Rete Ferroviaria Italiana - RFI, the
Italian infrastructure manager) with domain specific features, to improve the
current predictive systems. Then, we will leverage on a custom deep multi scale
models based Temporal Convolutional Network (TCN) [8] able to automatically
learn a rich and expressive representation directly from the data and to improve
the accuracy of the shallow models. Results on real-world data coming from a
series of stations in the North West of the Italian railway network, provided by
RFI, will support our proposal (Section 3). Section 4 will conclude the paper.

2 Problem and Proposal

The problem that we want to address in this paper is to predict the movements
duration of a train on a block section inside a station.

Fig. 1: A simple representation of a small station.

Since trains are not
equipped with a GPS,
the most fine-grained
data are the one com-
ing from the inter-
locking which allow
to record the occupa-
tion and liberation of
the block sections [3].
In fact, in order to
effectively and effi-
ciently plan the dispatching of the trains inside a station, it is required to predict
the time needed to traverse each block section [5] (Figure 1). In particular, we
need to be able to predict these movements duration at least 1 hour [4–6] in
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advance in order to being able to optimise the dispatching. For this purpose, at
time t, to make a prediction at time t+1h, all the time series representing the
behaviour of all trains in a sub portion of the network insisting on the station
of interest are available from t−∆ to t. Moreover, additional (side) information
is available like the planned itinerary of the trains through the station, if the
train stops (and in case the scheduled stop time), its delay, day of the week,
working day of holiday, type of train, time slot, weather conditions, etc. Note
also that not all trains are circulating through the network every day so not
all time series are present every day. This problem can be mapped in the class
of the regression problems with structured input data [8]. The problem can be
addressed with three approaches. The first one, which is currently used by RFI,
is to rely on simple historical statistics able to make reasonable predictions with
limited effort (i.e., lookup tables) [1]. The second one (Section 2.1) is to distil
these structured input data into simple features (i.e., representation) via features
engineering based on the experience of domain experts and then apply shallow
models [1]. The last approach (Section 2.2) is to automatically learn a rich and
expressive representation directly from the data, via deep architectures [8].

2.1 Shallow Models

Shallow models rely on a simple idea: map the raw input data into a series of
features able, from one side, to well represent the input data and, from the other
side, to remove redundant or negligible information. Then, based on these fea-
tures, train a classical (shallow) machine learning model [9] able to learn from
data the desired input/output relation. For this purpose, first an handcrafted
careful feature engineering phase able to exploit the experience of domain experts
has been performed.

Fig. 2: Ontology supporting feature engineering

To facilitate the pro-
cess we encoded the
knowledge of the op-
erators into an ontol-
ogy (see Figure 2) and
then, based on these
ontology we generate
the induced features
set. In fact, thanks to
a reasoner, the ontol-
ogy allows to model
and find easily new
properties and rela-
tions. Then, com-
puting classical sta-
tistical indexes (i.e.,
mean, median, variance, minimum, maximum, kurtosis, and skewness) of the
subset of information defined by the ontology we easily get our final features.
Exploiting these features, we tested different models (from Kernel Methods to
Gaussian processes and Ensemble Methods [9]) selecting RF [7] as it generally
outperformed all the others. RF also allows for computationally inexpensive
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feature ranking and then reduction [10]. In particular, using complete cross val-
idation with 10 folds [11], we tuned the number of predictors to the randomly
sampled in the construction of each tree in {1, 2, 4, 8, 16, 32, 64}, the minimum
number of samples of each leaf in {1, 2, 4, 8, 16}, and the number of features to
be kept during the feature reduction phase in {8, 16, 32, 64, 128}. The number
of trees in the forest, instead, has been set to 1000 since increasing it has not
shown to improve the accuracy.

2.2 Deep Models

Note that shallow models have two main limitations. The first one is to rely on
a handcrafted and experience-based feature engineering phase. The second, and
most important one, is that these features cannot effectively model and extract
all the multiscale information from the input time series.

(a) TCN Residual Block

(b) High level architecture

Fig. 3: Proposed Deep Model

In order to overcome these lim-
itations we first rely on a state-of-
the-art approach based on Long Short
Term Memory (LSTM) networks [12].
In particular, we defined a standard
architecture where the different raw
time series are fed to an LSTM layer
which is in charge to extract the rep-
resentation (of length equal to 10)
that is then fed directly to a dense
L1 regularised layer and then to dense
L2 regularised layer, together with a
Boolean variable which indicated if
the time series is present or not, and
the side information. Network has
been trained with the ADAM opti-
miser [12]. This architecture has a se-
ries of hyperparameters to be tuned
via complete cross validation with 10
folds [11] and the space of hyperpa-
rameters have been explored via ran-
dom search [13]. In particular we
searched the cyclical learning rate [14]
in {0.0001, 0.0005, 0.001} and the L2
and L1 regularisation [12] in the last
two dense layers in 10{−4.0,−3.2,··· ,4}.

Unfortunately, this architecture was not able to outperform the shallow
model as LSTM is only able to handle two temporal scales (a long and a short
temporal scale). To overcome this limitation we decided to rely on TCN residual
blocks [8], (replacing the LSTM) which is capable of learning different tempo-
ral scales for each raw input time series (Figure 3(a)). The peculiarities of the
proposed Deep Multi Scale Models architecture based on TCN are mainly three:
first the convolutions in the architecture are causal, namely there is not infor-
mation leakage from future to past, second the architecture can handle different
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(a) Actual (MAE: 19.3±5.1) (b) Shallow (MAE: 7.8±2.5) (c) Deep (MAE: 6.9±2.1)

Fig. 4: Comparison between the models (everything is in seconds)

sequence lengths and map it to an output sequence of the same length as the
LSTM, and finally is able to handle long effective history. For what concerns
the first characteristic, the TCN uses causal convolutions. For what concerns
the second characteristic, it is due to the use of 1D fully-convolutional network
model where each hidden layer is the same length as the input layer. As for
the last point we employ dilated convolution [15] that enables a large recep-
tive field without employing too deep TCN residual blocks. The network has
been trained with the ADAM optimiser. In this case, we explored the cyclical
learning rate in {0.0001, 0.0005, 0.001}, the dropout after the ReLU activation
functions in TCN residual blocks in {0.1, 0.15, · · · , 0.5} and the number of TCN
residual blocks for each input data. Moreover, for each TCN residual block, we
search the number of convolutional filters in {32, 64, 128} and the kernel size of
each convolutional filter in {3, 5, 7, 9, 11}. The high level proposed architecture
is reported in Figure 3(b).

3 Numerical Results

The experiments have been conducted exploiting the real-world data coming
from the Italian railway network and provided by RFI. In particular, we had
access to data about trains movements (and the related side information), of 6
months (at the end of 2019 since, because of the COVID pandemic, circulation
has been strongly reduced in 2020 and 2021) of trains movements of a series of
stations in the North West of Italy3. We also exploit, as exogenous information,
the weather conditions from the Italian open data weather stations service (e.g.,
solar radiation, rain, and wind).

We trained and validated [1] the different models (the one actually in use by
RFI, the shallow one of Section 2.1, and the deep one4 Section 2.2) on the first 5
months of data and we report in Figure 4 the Mean Average Error (MAE) and
the scatter plot (thousand random actual against predicted movements duration
in seconds) on the 6th month of data.

Figure 4 shows how the big leap in performance improvements is due to the

3All RFI-related data have been anonymised through the paper (e.g., name of the stations,
id of the trains, and id of the block sections) because of confidentiality issues.

4The one based on LSTM has not been reported since it underperformed (MAE: 10.9±3.3)
the shallow one (MAE: 7.8±2.5).

479

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



use of data driven models with respect to the simple statistics actually exploited
in RFI. Deep models are able to outperform the shallow ones showing that it is
actually able to extract automatically an informative representation from data.

4 Discussion

In this work we focused on predicting in-station train movements which is a
fundamental building block for developing and improving the current train dis-
patching. We took as baseline the current RFI system, which uses simple statis-
tics, and we improve it using a shallow model on top of a carefully crafted feature
engineering phase which exploits the domain knowledge of the experts in RFI.
Then we further improve the shallow model with a deep architecture based on
TCNs able to automatically learn expressive features from the data. Results on
six months of data coming from a series of stations in the North West of Italy
support the proposal.

This work is a first step towards improving the prediction of in-station train
movements, and more tests (on more stations and for a longer period of time) on
a larger period of time and space (once trains will restart to circulate after the
COVID pandemic) need to be performed to extensively asses the potentiality of
this solution. Moreover, research needs to be conducted to assess the potentiality
of this tool to improve the state-of-the-art train dispatching systems [5, 6].
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