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Abstract
In classical planning, conditional effects (CEs) al-
low modelling non-idempotent actions, where the
resulting state may depend on how many times
each action is consecutively repeated. Though CEs
have been widely studied in the literature, no one
has ever studied how to exploit rolling, i.e., how
to effectively model the consecutive repetition of
an action. In this paper, we fill this void by (i)
showing that planning with CEs remains PSPACE-
complete even in the limit case of problems with
a single action, (ii) presenting a correct and com-
plete planning as satisfiability encoding exploiting
rolling while effectively dealing with constraints
imposed on the set of reachable states, and (iii)
theoretically and empirically showing its substan-
tial benefits.

1 Introduction
In classical planning, the environment in which agents op-
erate is represented through Boolean variables, and actions
are idempotent, i.e., applying the same action once or mul-
tiple times results in the same state. The idempotence prop-
erty falls if we introduce conditional effects (CEs), i.e., ac-
tions with state-dependant effects. Dealing with one ap-
plication of an action with CEs has been extensively stud-
ied and two main approaches exist: either (i) one deals
with CEs in a native way, i.e., by encapsulating CEs di-
rectly in the procedure searching for a plan [Rintanen, 2011;
Röger et al., 2014; Katz, 2019], or (ii) one compiles-away
actions with CEs [Gazen and Knoblock, 1997; Nebel, 2000;
Gerevini et al., 2024]. Logic-based native approaches (see,
e.g. [Rintanen, 2011]), are all based on planning as satisfia-
bility (PaS) [Kautz and Selman, 1992] where a planning task
Π is solved by first encoding Π into a corresponding logic for-
mula Πn incorporating a bound (or number of steps) n, and
then searching for a model of Πn, increasing n upon failure.
In all existing PaS approaches, an action a can be applied at
most once per step, and thus, a plan with r consecutive rep-
etitions of a will be found in a number of steps n ≥ r. The
rolling technique, introduced for numeric planning in [Scala
et al., 2016], allows modelling consecutive repetitions of a in
a single step, thus reducing the bound n. Rolling has proved

to be very effective in numeric planning [Scala et al., 2016;
Cardellini et al., 2024]. Similarly to the numeric case, con-
straints on the state-space must be carefully handled while
rolling to assure the plan’s validity [Scala et al., 2016].

In this paper, we ask if rolling can be effectively exploited
also in classical planning with CEs and constraints. Firstly,
we show that planning with CEs remains PSPACE-complete
[Nebel, 2000] even in the limit case of problems with a single
action, and thus, finding how many times the action has to
be consecutively applied is a difficult problem on its own.
Secondly, we present a PaS encoding in which an action can
be consecutively repeated in a single step. Given an action
a, we (i) compute its transition relation Ta representing all
the states reachable after one application of a, (ii) compute
its transitive closure (TC) relation T +

a (see, e.g., [Matsunaga
et al., 1993]) representing the states reachable after at least
one application of a, and (iii) define a PaS encoding Π+,
exploiting a propositional variable a+ to denote if action a is
applied at least once, and T +

a to compute the states reachable
with a. Given a model for the encoding Π+ at bound n, we
determine the number of times each action a is applied by
exploiting the intermediate formulae used to compute T +

a .

Since deciding the reachability of a state by repetitions of
an action with CEs is PSPACE-complete, the computation of
the TC T +

a can become impractical. To alleviate this burden,
we (i) show how constraints can be leveraged to simplify T +

a ,
and (ii) construct T +

a through Reduced Ordered Binary De-
cision Diagrams (simply BDDs) [Bryant, 1985], which have
been widely employed for this purpose in Model Checking
[Burch et al., 1992; Clarke et al., 1996] due to its often com-
pact representation and canonicity. If the computation of T +

a
becomes unpractical even then, we can limit the time on the
construction of T +

a and exploit the intermediate formulae T m
a

with m ≥ 0 produced while constructing T +
a – in the best

case being T m
a = T +

a and in the worst case being T 0
a = Ta

– modelling the states reachable in up to 2m repetitions of a,
reducing by a factor of 2m the bound required to find a plan.

We prove that our approach is correct and complete, and
run an experimental analysis on novel domains where a plan
must have repetitions of an action. The analysis confirms our
theoretical results and, by comparing to the case where rolling
is disabled, confirms the benefits of rolling.



2 Preliminaries
2.1 Classical Planning With CEs and Constraints
A classical planning task with CEs and constraints (in the fol-
lowing, just planning task ) is a tuple Π = ⟨V,A, I,G,C⟩.
The set V contains propositional variables with domain
{⊤,⊥}, the symbols for truth and falsity. The set V induces
the set of literals lit(V ) = {v | v ∈ V } ∪ {¬v | v ∈ V }. Let
L ⊆ lit(V ), we define L+ = {v | v ∈ L} and L− = {v |
¬v ∈ L}. In the following, we consider only consistent sets
L of literals, i.e., with L+∩L− = ∅. An action a ∈ A is a pair
⟨pre(a),post(a)⟩ where the precondition pre(a) is a propo-
sitional formula over V and the postcondition post(a) is a set
of CEs of a. A CE e is a pair ⟨cond(e), eff(e)⟩ where cond(e)
is a propositional formula representing the conditions of ap-
plying the effects eff(e) ⊆ lit(V ). If v ∈ eff(e) we say that
e adds v, if ¬w ∈ eff(e) we say that e deletes w. We denote
by add(a) and del(a) the set of variables added or deleted
by a, with ∆+

a (v) and ∆−
a (v) the set of CEs of an action a

that adds or deletes a variable v If, for each e ∈ post(a), we
have cond(e) = ⊤, then a is without CEs, and with CEs oth-
erwise. If, for each a ∈ A, a is without CEs (resp. with CEs),
then also Π is. A state is a set s ⊆ V containing the variables
which are true in s, while V \ s are false in s. We denote
by S = 2V the set of all states. To conclude the description
of Π, we have the initial state I ∈ S, and the goal condition
G and the constraints C, both defined as propositional for-
mulae over V . We take for granted the standard notions of
satisfiability and write s |= ϕ to mean that state s satisfies the
propositional formula ϕ. An action a is applicable in a state s
if (i) s |= pre(a), (ii) there exists at least one CE e ∈ post(a)
such that s |= cond(e), and (iii) there are no conflicting CEs,
i.e., for each v ∈ V , e+ ∈ ∆+

a (v) and e− ∈ ∆−
a (v) then

s ̸|= cond(e+)∧ cond(e−). Applying an action a in a state s
results in a state s′ = res(s, a), such that either

1. s′ is undefined if either s is undefined or a is not appli-
cable in s, or

2. for each v ∈ V we have v ∈ s′ iff either (i) v ∈ s and
there is no CE e ∈ ∆−

a (v) such that s |= cond(e), or (ii)
there is a CE e ∈ ∆+

a (v) such that s |= cond(e).
Applying a sequence of n actions α = a1; . . . ; an from a
state s0 induces a sequence of n+1 states s0; . . . ; sn where
si+1 = res(si, ai+1) with i ∈ [0, n) and we say that sn =
res(s0, α). The sequence α is valid if si |= C for each i ∈
[0, n]. A valid plan π for a planning task Π is a valid sequence
of actions π = a1; . . . ; an such that res(I, π) |= G. We
denote by |π| = n the length of π = a1; . . . ; an, and with ak,
with k ≥ 0, the sequence of k repetitions of a.

2.2 Planning as Satisfiability
Let Π = ⟨V,A, I,G,C⟩ be a planning task. In planning as
satisfiability (PaS) [Kautz and Selman, 1992], an encoding E
of Π is a tuple ΠE = ⟨X ,A, I(X ), T E(X ,A,X ′),G(X )⟩
where X is a finite set of state variables, in our case equal to
V ,A is a finite set of action variables, I(X ) is the initial state
formula, i.e., the conjunction of {v | v ∈ I} ∪ {¬w | w ∈
V \ I}, and, G(X ) is the goal formula, i.e., the formula G.

Each encoding E is characterized by the symbolic transi-
tion relation T E(X ,A,X ′), where X ′ = {v′ | v ∈ X} is the

set of next state variables. A model µ for T E is an assignment
µ : X ∪ A ∪ X ′ 7→ {⊤,⊥}. As standard for PaS encodings,
ΠE has to guarantee correctness and completeness.1

1. Correctness: each model µ of T E corresponds to at least
one valid sequence of actions α such that if s = {v |
µ(v)} and s′ = {v | µ(v′)} then s′ = res(s, α).

2. Completeness: for each state s and action a applicable
in s, if s′ = res(s, a), s, s′ |= C, then there is a model
µ of T E s.t. s = {v | µ(v)}, s′ = {v | µ(v′)}.

Given ΠE , in the PaS approach, an integer n ≥ 0 called
bound or number of steps is fixed, n + 1 disjoint copies
X0, . . . ,Xn of the set X of state variables, and n disjoint
copies A1, . . . ,An of the set A of action variables are made,
and the E encoding of Π with bound n is the formula

ΠE
n = I(X0) ∧

n−1∧
i=0

T E(Xi,Ai+1,Xi+1) ∧ G(Xn), (1)

in which I(X0) is obtained by substituting in I(X ) each vari-
able v ∈ X with v0 ∈ X0 , and similarly for T E and G. The
satisfiability of ΠE

n is checked by calling a SAT solver start-
ing from n = 0 and incrementing n until a model (and thus
a valid plan) is found. The correctness of T E ensures the
correctness of ΠE : each model of ΠE

n corresponds to a valid
plan. The completeness of T E ensures the completeness of
ΠE : if there exists a plan for Π of length n, ΠE

n is satisfiable.

3 Complexity of Rolling
In this section, we present our main complexity result for
classical planning with CEs.
Theorem 1. Deciding whether a valid plan exists for a clas-
sical planning task with CEs and with only one action is
PSPACE-complete.

Proof. Let Π = ⟨V, {a}, I, G,⊤⟩. (Membership) The prob-
lem is in PSPACE because the size of a state is bounded by
|V | and we iteratively apply a from I until we reach sn |= G.
Since there are at most 2|V | possible states, no more than 2|V |

repetitions of a are required to reach sn. (Hardness) Let M
be a Deterministic Turing Machine (DTM) with bounded tape,
i.e., M = ⟨Q,Σ,Γ, δ, q0, qa, n⟩ (see, e.g., [Sipser, 1997]). Q
is the set of states, Σ the input alphabet, Γ the tape alphabet
including Σ and the symbol ⊔ for “blank”, δ is a partial func-
tion δ : Q × Γ 7→ Q × Γ × {L,R}, the states q0, qa ∈ Q
are the initial and accepting states, respectively, n ∈ N is
the bounded length of the tape. Let the input of the DTM be
y1; . . . ; ym with yi ∈ Σ and m ≤ n. We reduce the DTM M
to the planning task Π such that

V = {tpi | i ∈ [0, n+ 1]} ∪ {ati,q | i ∈ [1, n], q ∈ Q}
∪ {ini,x | i ∈ [1, n], x ∈ Γ} ∪ {accept},

I = {tpi | i ∈ [1, n]} ∪ {at1,q0}
∪ {ini,yi | i ∈ [1,m]} ∪ {ini,⊔ | i ∈ (m,n]},

G = accept.

1In the rest of the paper µ(v) corresponds to the equation µ(v) =
⊤ and s, s′ |= ϕ to s |= ϕ ∧ s′ |= ϕ.



Where tpi is used to control the allowed cells of the tape, ati,q
signals that the DTM is in tape’s cell i and state q, and ini,x

signals that cell i contains symbol x. The only action in Π
is a = ⟨⊤,post(a)⟩ where, for each i ∈ [1, n] and (q, x) ∈
Q× Γ, if δ(q, x) = (q′, x′, L) then post(a) contains
⟨ati,q ∧ ini,x ∧ tpi−1, {¬ati,q, ati−1,q′ ,¬ini,x, ini,x′}⟩,

i.e., if the DTM is in cell i and state q, reading x, and the cell
on the left is allowed, then the DTM moves left to cell i−1
and to state q′ and the symbol in cell i is replaced with x′.
Similarly, if δ(q, x) = (q′, x′, R) then post(a) contains
⟨ati,q ∧ ini,x ∧ tpi+1, {¬ati,q, ati+1,q′ ,¬ini,x, ini,x′}⟩.

Finally, for each i ∈ [1, n], post(a) contains

⟨ati,qa ∧
∧
{¬ini,x | x ∈ Γ, q′ = σ(qa, x)}, {accept}⟩,

i.e., the DTM accepts if it is in the accepting state, and it is
not reading any symbol that would change the DTM state.

Since the CEs encode the transition δ, a valid plan can be
found iff M accepts. Since |Q| × |Γ| × n is polynomial w.r.t.
the size of M , we conclude that a DTM with polynomially
bounded tape and its input can be polynomially reduced to a
planning task with only one action with CEs.

4 Rolling Actions with Conditional Effects
In this section, we show how to exploit rolling of actions with
CEs. Firstly, we describe the concept of transition relation,
i.e., a logic formula denoting the states reachable with one
application of an action. Then, we show how to compute its
transitive closure (TC), obtaining a logic formula denoting all
the states reachable by at least one repetition of an action.

4.1 Transition Functions and Transition Relations
Let Π = ⟨V,A, I,G,C⟩ be a planning task. The transition
function of a ∈ A is a function Ta : S × S 7→ {⊤,⊥} such
that, for each s, s′ ∈ S, we have Ta(s, s

′) = ⊤ iff (i) a is
applicable in s and (ii) s′ = res(s, a). Notice how, for now,
we allow s, s′ ̸|= C, which we will disallow later on.

As standard for PaS encodings (see, e.g., [Rintanen, 2011]),
we model an action’s transition function through a transition
relation. A transition relation of an action a is a propositional
formula Ta(X ,X ′), where X = V and X ′ = {v′ | v ∈ X} is
a copy of X . The models of Ta represent the states s, s′ ∈ S
such that Ta(s, s

′) = ⊤. For the case of classical planning
with CEs and constraints, the transition relation Ta(X ,X ′) is
the conjunction of the union of the following sets of formulae:

1. prea which contains

pre(a) ∧
∨

e∈post(a)

cond(e),

ensuring the preconditions of a and the conditions of at
least one CE in post(a) are satisfied,

2. effa(V ) which contains, for each v ∈ V ,

v′ ↔
(
v ∧

∧
e∈∆−

a (v)

¬cond(e)
)
∨

∨
e∈∆+

a (v)

cond(e),

ensuring s′ = res(s, a), i.e., v′ is true if v is true and no
condition of a CE deleting v (∆−

a (v)) is satisfied, or at
least one condition of a CE adding v (∆+

a (v)) is satisfied,

3. conflicta(V ), containing for each v ∈ V and for each
e1 ∈ ∆+

a (v) and e2 ∈ ∆−
a (v)

¬
(
cond(e1) ∧ cond(e2)

)
,

ensuring no conflicting CEs’ conditions are satisfied.

4.2 Computing the Transitive Closure
Let Π = ⟨V,A, I,G,C⟩ be a planning task and a be an action
of Π with transition function Ta. The TC function of a is
T+
a : S × S 7→ {⊤,⊥} such that for each state s, s′ ∈ S,

T+
a (s, s′) = ⊤ iff (i) a is applicable in s, and (ii) there exists

a valid sequence ak with k ≥ 1 such that s′ = res(s, ak).
The TC function T+

a can be computed iteratively (see, e.g.
[Matsunaga et al., 1993]) using the TC relation T +

a , starting
from the transition relation Ta. Let T i

a (X ,X ′) be the i-th step
transition relation of a, such that T 0

a (X ,X ′) = Ta(X ,X ′)
and for each i ≥ 0,

T i+1
a (X ,X ′′) = C(X ) ∧ C(X ′′) →
T i
a (X ,X ′′) ∨ ∃X ′ : T i

a (X ,X ′) ∧ C(X ′) ∧ T i
a (X ′,X ′′), (2)

where C(X ) is obtained by replacing the variables in C with
the ones in X (and similarly for X ′ and X ′′). The models
of T i

a represent the states s, s′′ ∈ S such that the i-th step
transition function T i

a(s, s
′′) = ⊤. Notice how T i+1

a (s, s′′)
is true if either s ̸|= C or s′′ ̸|= C. This relaxation allows,
in some cases, a more compact formula for T +

a , and will be
better explained in Section 4.3. The requirement that s, s′′ |=
C will be enforced at a later stage.

Continuing the computation, by the finiteness of the states,
there exists a p ≥ 0 – called the fix-point index of Ta– such
that T p

a (X ,X ′) is logically equivalent to T p+1
a (X ,X ′). By

representing each T i
a with BDDs, which are canonical repre-

sentations of propositional formulae, we check logical equiv-
alence of T p and T p+1 by assessing if they have the same
BDD. The TC relation T +

a is thus the fix-point relation T p
a .

Lemma 1. Let p be the fix-point index of the transition func-
tion Ta of an action a of a planning task with constraints C.
For each i ∈ [0, p] and s, s′′ ∈ S s.t. s, s′′ |= C

T i
a(s, s

′′) ↔ ∃r ∈ [1, 2i] : s′′ = res(s, ar).

Sketch Proof. For i = 0, T 0
a (s, s

′′) ↔ Ta(s, s
′′) which by

definition models s′′ = res(s, a), i.e., 20 = 1 repetitions of a.
For i > 0, by Eq. 2, T 1

a (s, s
′′) models the states reachable af-

ter up to 2 repetitions of a: we can model (i) s′′ = res(s, a2)
since T 0

a (s, s
′) models s′ = res(s, a) and T 0

a (s
′, s′′) models

s′′ = res(s′, a), and (ii) we can model s′′ = res(s, a1) be-
cause T i

a (X ,X ′′) ∧ C(X ) ∧ C(X ′′) entails T i+1
a (X ,X ′′) in

Eq. 2. Since s, s′′ |= C, Eq. 2 guarantees that s′ |= C. By
induction, we prove that T i

a(s, s
′′) can model up to 2i repe-

tition of a , since we have T i−1
a (s, s′) to reach s′ from s in

at most 2i−1 steps, and T i−1
a (s′, s′′) to reach s′′ from s′ in at

most 2i−1 steps.

The function T i
a(s, s

′) thus specifies if s′ is reachable from
s in at most 2i repetitions of a. In the following sections
we will also need to know if the state is reachable in exactly
2i repetitions of a. For this reason, we introduce the i-th



step exponential reachability relation of a as Ri
a such that

R0
a(X ,X ′′) = Ta(X ,X ′′) and for i > 0

Ri+1
a (X ,X ′′) = ∃X ′ : Ri

a(X ,X ′) ∧ C(X ′) ∧Ri
a(X ′,X ′′). (3)

The i-th step exponential reachability function Ri
a : S×S 7→

{⊤,⊥} can be retrieved fromRi
a as for T i

a.
Lemma 2. Let a be an action and let Ri

a be its i-th step ex-
ponential reachability function.

Ri
a(s, s

′) ↔ s′ = res(s, a2
i

).

Sketch Proof. As for Lem. 1, by induction on Eq. 3.

As stated in the introduction, the TC computation can be-
come intractable, due to formulae becoming exponentially
long, even when employing BDDs. However, the computation
of the TC can be stopped at any time, before its fix-point index
p, returning the last computed relation T m

a with m ∈ [0, p],
which models the states reachable with up to 2m repetitions
of a (Lem. 1). We name m the timeout index.

4.3 Transitive Closure and Constraints
Let Π = ⟨V,A, I,G,C⟩ be a planning task. In this section,
we show how constraints can, in some cases, simplify TCs.
Example 1. A robot can move in one direction on a ring
tape with k cells, where the last and first cell are connected.
The problem can be modelled as a planning task where V =
{c1, . . . , ck} models the position on the tape, I = {c1}, and
there is only one action mv with pre(mv) = ⊤ and

eff(mv) = {⟨c1, {¬c1, c2}⟩, . . . , ⟨ck, {¬ck, c1}⟩}.

Let’s suppose that C = ⊤, i.e., there are no constraints.
One would imagine that, since the robot can reach any cell
in the ring tape by applying mv at most k times, then the TC
function T+

mv(s, s
′) would be ⊤ for each s, s′ ∈ S. However,

the TC has to consider also the cases where |s| or |s′| is not 1,
e.g., T+

mv({c1}, {c2, c4}) = ⊥. To avoid this problem, we can
specify in C that the robot must be exactly in one cell, i.e.,

C =
∨k

i=1 ci ∧
∧k

i=1

∧k
j=i+1 ¬(ci ∧ cj).

Employing this constraint we have that T+
mv(s, s

′) = ⊤ for
each s, s′ ∈ S, since, if either s ̸|= C or s′ ̸|= C then, in Eq.
2, the l.h.s. of the implication is ⊥. Intuitively, if the robot
starts from any state s0 |= C it can reach any other state
sn |= C by passing only in states si |= C, i ∈ (0, n). If the
robot starts from a state s ̸|= C then it can reach any state. By
guaranteeing that the robot always start moving from a state
s |= C (later in the encoding), we will guarantee correctness.

The use of constraints thus can, in some cases, be beneficial
in producing smaller T +

a by not considering states which do
not align with our knowledge of the problem.

5 The Closure-Encoding
Let Π = ⟨V,A, I,G,C⟩ be a planning task. For each ac-
tion a ∈ A, let Ta(X ,X ′) be the transition relation of a and
let T +

a (X ,X ′) be its TC relation. We now present the clo-
sure encoding Π+ for Π. As standard for PaS approaches,
the sets X , A, X ′ represent the current state, action, and

Algorithm 1 Computation of the rolling of a needed to reach
s′′ from s.

1: global T 0
a , . . . , T

p
a , R

0
a, . . . , R

p
a //previously computed

2: function REPETITIONS(a, s, s′′, p)
3: if T 0

a (s, s
′′) then

4: return 1
5: for j ∈ [1, p] do
6: if T j

a (s, s
′′) then

7: s′ ← s′ : Rj−1
a (s, s′)

8: return 2j−1+REPETITIONS(a, s′, s′′, j− 1)

9: return -1

next state variables. In A there is a propositional variable
a+ for each action a in A, denoting if a is repeated at least
one time. The current state variables X are equal to V and
the set X ′ is a copy of X . The closure-encoding for Π is thus
Π+ = ⟨X ,A, I(X ), T +(X ,A,X ′),G(X )⟩ in which I(X )
and G(X ) are defined as in Sec. 2.2 and T +(X ,A,X ′) is a
closure symbolic transition relation, i.e., the conjunction of
the union of the following sets:

1. closure+(A, V ), which contains, for each action a ∈ A,

a+ → T +
a (X ,X ′),

i.e., if a+ is executed, X ′ must be reachable from X in
at least one repetition of a,

2. frame+(V ), which contains, for each v ∈ V ,

v′ ̸= v →
( ∨

a:v∈add(a)

a+ ∨
∨

a:v∈del(a)

a+
)

i.e, an action must have triggered the change of v,
3. amo+(A), where for each a1 ̸= a2 ∈ A we have,

¬(a+1 ∧ a+2 )

i.e., at each step, at most one action is applied,
4. constraints+(V,C), where we have,

C(X ) ∧ C(X ′),

ensuring the respect of C, skipped in Eq. 2.

5.1 Valid Plan with the Closure-Encoding
Let Π = ⟨V,A, I,G,C⟩ be a planning task, and let Π+ be
the closure-encoding of Π with closure symbolic transition
relation T +(X ,A,X ′). For any model µ of T +(X ,A,X ′)
we associate an action a such that µ(a+) = ⊤. As stated in
Sec. 2.2, to find a plan, we employ Eq. 1, starting from n = 0
and increasing n until Π+

n is satisfiable. Let µ be the model
satisfying Π+

n . We denote by

PLAN(Π+
n , µ) = a1; . . . ; an (4)

the sequence of actions where each ai with i ∈ [1, n] is the
action obtained by the model µ of T +(Xi−1,Ai,Xi). It is
clear that PLAN(Π+, n, µ) may not be a valid plan for Π,
since each action ai in the plan only indicates that it is ap-
plied at least one time. To produce a valid plan for Π, we



need thus to compute how many times each action must be
actually repeated.

For each action a, let T 0
a , . . . , T

+
a be the transition func-

tions computed when constructing the TC of a, and let
R0

a, . . . , R
+
a be the correspondent exponential reachability

function. Alg. 1 shows the structure of the REPETITIONS
algorithm, taking as input an action a, the state before (s)
and after (s′′) the repetition of a and, initially, the index p is
either the fix-point index or the timeout index of T +

a . The
algorithm, using T j

a and starting from j = 0, checks whether
s′′ is reachable from s in at most 2j repetitions of a (Lem. 1)
increasing j upon failure. When such a j is found, it means
that the rolling of a lies in (2j−1, 2j ]. Line 7 employs the
following Lemma:
Lemma 3. Let s be a state in which a is applicable. For any
i ≥ 1, there exists at most one state s′ such that Ri

a(s, s
′).

Sketch Proof. The proof follows from the determinism of
res(s, a), since, applying a in any state s leads to only one
state s′.

Thus, using the exponential reachability function Rj−1
a ,

Line 7 finds the intermediate state s′ reached after 2j−1 repe-
titions of a from s and calls again the function REPETITIONS,
computing the repetitions of a needed to reach s′′ from s′. If
state s′′ is not reachable from s in up to 2p repetitions of a,
then REPETITIONS returns −1, signalling unreachability.
Theorem 2. Let s, s′′ be states, a be an action applicable in
s, and p ≥ 0. If r = REPETITIONS(a, s, s′′, p) > 0 then
s′′ = res(s, ar).

Proof. By induction. If s′′ = res(s, a), then T 0
a (s, s

′′) = ⊤
by construction and REPETITIONS(a, s, s′′, p) = 1. Sup-
pose that the thesis holds for all r ∈ [1, 2j−1], for some
j ∈ [1,m]. If r ∈ (2j−1, 2j ], then, by Lem. 1, we know
T 0
a (s, s

′′) = · · · = T j−1
a (s, s′′) = ⊥ and T j

a (s, s
′′) = ⊤.

Thus by Lem. 3, we know there exists only one state s′

such that Rj−1
a (s, s′) = ⊤ and, by Lem. 2 we know that

s′ = res(s, a(2
j−1)) thus, to reach s′′ from s′, we still need

r′ = r − 2j−1 repetitions. Since r ∈ (2j−1, 2j ], then
r′ ∈ [1, 2j−1] and following the inductive hypothesis, r′ can
be computed as REPETITIONS(a, s′, s′′, j − 1).

Finally, let µ be a model of Π+
n . We denote by

REPEATEDPLAN(Π+
n , µ) = ar11 ; . . . ; arnn

the sequence of actions where for each i ∈ [1, n], each ai is
the action as of Eq. 4 , ri = REPETITIONS(ai, si−1, si, pi),
si−1 and si are the states before and after the repetition of ai,
obtained from µ, i.e., si = {v | vi ∈ Xi, µ(vi)} (and simi-
larly for si−1) and pi is the fix point or timeout index found
when computing each TC T +

ai
(X ,X ′). In the next section, we

prove the correctness and completeness of the approach, i.e.,
REPEATEDPLAN(Π+, µ) is a valid plan for Π.

5.2 Correctness, Completeness and Domination
Let Π0, with symbolic transition relation T 0(X ,A,X ′) be
the closure-encoding constructed as Π+ but where, for each
action a the TC T +

a (X ,X ′) is substituted with the transitive
relation T 0

a (X ,X ′) i.e., a can be executed at most once.

Theorem 3. Let Π be a classical planning task with CEs. The
encoding Π0 is correct and complete.2

Proof. (Correctness) Each model µ of T 0(X ,A,X ′) corre-
sponds to a sequence of actions α = a with only one action,
due to the amo+(A) axioms. The action a is applicable in
the state s = {v | v ∈ X , µ(v)} due to the axioms prea and
conflicta(V ) inherited from Ta(X ,X ′) in closure+(A, V )
and the last state induced by a is s′ = {v | v′ ∈ X , µ(v′)}
due to effa(V ) and frame+(A, V ). Both s and s′ |= C
due to the constraints+(V,C) axioms. (Completeness) Let
a be an action applicable in a state s and let s′ = res(s, a).
The formula T 0(X ,A,X ′) joined with the conjunction of the
set {a+} ∪ {¬a+1 | a1 ∈ A, a1 ̸= a} ∪ s ∪ {¬v | v ̸∈
s} ∪ s′ ∪ {¬v′ | v ̸∈ s′} is equivalent to ⊤.

Let M : A 7→ N. We denote by ΠM the encoding con-
structed in the same way as Π+ but where, for each action a,
the TC T +

a (X ,X ′) is substituted with the transitive relation
T M(a)
a (X ,X ′), obtained in the construction of T +

a (X ,X ′)

Theorem 4. Let Π be a classical planning task with CEs. The
encoding ΠM is correct and complete.

Proof. If, for each a ∈ A, M(a) = 0, we fall back to
Thm. 3. (Correctness) Each model µ of T M (X ,A,X ′)
corresponds to a sequence of actions α = ar, with r ≥ 1.
Let p be the fix point index at which the TC T +

a (X ,X ′)
is found. If M(a) ≤ p then Thm. 2 guarantees that
r = REPETITIONS(a, s, s′, p) > 0 with s = {v | v ∈
X , µ(v)} and s′ = {v | v′ ∈ X ′, µ(v′)}. If M(a) > p

the fix point computation ensures that T M(a)
a (X ,X ′) ≡

T p
a (X ,X ′). (Completeness) The completeness follows di-

rectly from Thm. 3 since, the sequence α = a1 is also a
solution of ΠM .

Theorem 5. Let Π be a classical planning task with CEs. The
closure-encoding Π+ is correct and complete.

Proof. Special case of Thm. 4 where M(a) corresponds to
the fix point of T +

a (X ,X ′) for each action a ∈ A.

Given two correct and complete PaS encoding E1 and E2

we say that E1 dominates E2 (E1 ≤ E2) if, for each bound
n, ΠE2

n satisfiability implies satisfiability of ΠE1
n . Thus let

n1, n2 ∈ N be the smallest bounds such that ΠE1
n1

and ΠE2
n2

are satisfiable, if E1 ≤ E2 then n1 ≤ n2.

Theorem 6. Π+ ≤ ΠM ≤ Π0.

Proof. We have to prove that, for any bound n, if ΠM
n is sat-

isfiable then also Π0
n is satisfiable, which follows from the

fact that any model µ of T 0(X ,A,X ′) is also a model of
T M (X ,A,X ′). The same applies for Π+ ≤ ΠM .

Thm. 6 provides the practical approach described in the in-
troduction: if computing the TC T +

a (X ,X ′) at fix point p for
each action a takes too long, we can stop at some intermedi-
ate step m ∈ [0, p] and still have benefits from rolling using
T m
a (X ,X ′).

2The definitions of correctness and completeness are in Sec. 2.2.
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Figure 1: Example of the Loops domain with 3 loops of length 12.

6 Experimental Analysis
We now present an experimental analysis run on three novel
domains where any valid plan must contain consecutive rep-
etitions of an action. We run the analysis by comparing Π+

with Π0, i.e., the approach where rolling is disabled.

6.1 Domains
Counter. The Counter domain models a counter of x, a
number represented with B bits. An action can increase x by
one, except if x = 2B−1 when x is reset back to 0. Starting
from k > 0, x has to reach k − 1. The number x is rep-
resented by the variables V = {xB , . . . , x1} with xB being
the most significant bit. There is only one action inc with
pre(inc) = ⊤ and with post(inc) = {ixB , . . . ,ix1,ow}
where (i) ix1 models the transition from 0 to 1 of x1, (ii)
ixi, for i ∈ (1, B], models the transition of the substring of
bits xi;xi−1; . . . ;x1 from 01 . . . 1 to 10 . . . 0, and (iii) ow
models the transition of x from 1 . . . 1 to 0 . . . 0. There are no
constraints (i.e., C = ⊤). Any valid plan must contain 2B−1
repetitions of inc.

Cube. The Cube domain models three robots which move
on the three axis x, y, z in a cubic space with side L. The three
robots start at the vertices (L, 0, 0), (0, L, 0) and (0, 0, L) and
have to reach the vertex (L,L,L). The problem is a more
complicated version of Ex. 1. There are 9 × L variables
modelling the integer position in [1, L] of the three robots in
x, y, z. For each robot, there are three actions to move for-
ward, right or up and increase by one either x,y or z. As for
Ex. 1 the constraints in C state that each robot must always
be in only one position. The smallest valid plan must con-
tain at least 3× 2× (L− 1) actions, i.e., the actions to move
through two sides of the cube of the three robots.

Loops. The Loops domain puts together all the previous
examples. A robot can move on K loops of length L, in
each loop there is a counter of B bits initialized at a ran-
dom number. Fig. 1 shows an example with K = 3 loops
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Figure 2: Experimental analysis on the Counter domain.

of length L = 12 and with counters of B = 8 bits. Each
cell in the loop is indexed from 1 to L. Each loop’s counter
is at cell ⌈L/2⌉ + 1. A robot can only move clockwise in
the loop. When the robot is in cell 1 it can move in cell 1 of
another loop. When in counter’s cell, the robot can increase
the counter by one. The goal is to have all the counters with
the same value.

6.2 Analysis
For each domain presented and for each problem of increas-
ing size, we compare two encodings: Π+, i.e., the encoding
presented in this paper employing the TC to execute (possi-
bly) more than one action in one step, and Π0, i.e., the ap-
proach presented in Thm. 3, where at most one action can be
executed at each step. For both encodings, the PDDL domain
and problem files (i.e., the planning task Π) are first encoded
into Π+ and Π0, and then translated into propositional for-
mulae as shown in Eq. 1, starting from n = 0. We imple-
mented the approach on the PATTY solver3 [Cardellini et al.,
2024] which makes use of Z3 v4.12.2 [de Moura and Bjørner,
2008] to compute the model (if any) satisfying Π+

n and Π0
n.

Each problem and encoding has a time limit of 10 minutes
on an Intel Xeon Platinum 8000 3.1GHz with 8GB of RAM.
The results for the Counter, Cube and Loops domains are
shown in Figs. 2, 3 and 4, respectively. For each domain, we
show how the bound and planning time change while varying
the size of the problem. The red line represents Π0 and the
green line Π+. For the planning time, we consider the time
elapsed from the parsing of the PDDL problem to the output
of the plan. We indicate with a dashed green line the time
it takes to compute the TC of all the actions in the planning
task. The transitive closure is computed via BDDs, employing
the pyeda tool4. In the BDD the variables in X ∪ X ′ have
been ordered alphabetically by name. We limit the computa-
tion of all actions’ TCs to 3 minutes, equally divided among
all actions, and for each action we return the last computed
transition relation before the time limit.

In the Counter domain, we recall that a valid plan must
contain at least 2B − 1 incr actions. In Fig. 2 we see
how, in fact, the bound required by Π0 to find a plan in-
creases exponentially with B. For Π+ instead, the bound is
1 for B ∈ [3, 11] where the TC can be computed under the

3https://pattyplan.com
4https://pyeda.readthedocs.io/

https://pattyplan.com
https://pyeda.readthedocs.io/
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Figure 3: Experimental analysis on the Cube domain.

time limit. When B is 12 the TC computation reaches the
time-limit and T 10

incr is returned, modelling 210 repetitions of
incr (Lem. 1), and requiring a bound of 4 to find the valid
plan of 212 − 1 repetitions. Notably, when the fix point is
reached, the total time is mainly the time to compute the TC.

In the Cube domain, the shortest valid plan has 6×(L−1)
actions which are reflected in the bound required by Π0 in
Fig. 3. When L = 5 the bound required by Π0 would be 24,
but the system timeouts before being able to find a solution.
For Π+ instead, the TC can be computed under the time-limit
until L = 15. Due to the amo+(A) axioms of the encoding,
the bound for Π+ is equal to 6, i.e., the different actions in
the plan. As discussed in Sec. 4.3, the use of constraints
can allow, in some cases, the transitive closure to be smaller.
Indeed, comparing the transitive closure size (in terms of BDD
nodes) of the planning task with and without constraints, we
obtain a 40% reduction in the BDDs nodes of the TC.

In the more complicated Loops domain, for each dimen-
sion, i.e., K, L and B, we plot how the bound and planning
time change by varying one dimension and keeping the other
one fixed to their minimum value (i.e., 3). By increasing the
number of loops and counters (i.e., K), we see in the first and
second chart from the top of Fig. 4, how the bounds for both
Π+ and Π0 increase linearly with K. However, the bound
of Π0 diverges linearly from the one of Π+, since, for each
loop, a valid plan has L = 3 actions to move through the
loop and at most 23 − 1 increases of the associated counter.
By only increasing the length of the loops L in the third and
fourth chart from the top, we see how again the bound of Π0 is
greater than the bound of Π+. However, in this case, the plan-
ning time of Π0 is shorter than Π+, since, for smaller bounds,
the computation of the TC is actually pricier than iteratively
increasing the bound. The fifth and sixth charts present the
same behaviour of the Counter domain.

In all the domains we have experimentally confirmed Thm.
6, showing that Π+ ≤ Π0.

7 Conclusions and Future Work
We presented a technique to perform rolling in classical plan-
ning with CEs and constraints, which was previously unex-
plored. We theoretically and experimentally demonstrated
that the approach is interesting and beneficial. Several works
have been published introducing new approaches to reduce
the bound required to find a solution, being one of the weak-
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Figure 4: Experimental analysis on the Loops domain. For each
dimension, i.e., K, L and B, we plot how the bound and planning-
time change by varying one dimension and keeping the other fixed
to their minimum value.

nesses of the PaS approach [Wehrle and Rintanen, 2007;
Balyo, 2013; Bofill et al., 2016; Cardellini et al., 2024;
Cardellini and Giunchiglia, 2025]. In the future, we plan to
(i) minimize the bound even further by integrating our TC
approach in the latest SOTA PaS approach [Cardellini et al.,
2024] where a finite sequence of actions is employed to ap-
ply different actions in the same step and (ii) study how to
compute the TC of multiple actions, effectively combining the
possible effects of different actions in one transition relation.
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