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Abstract

In-station train dispatching is the problem of optimising the
effective utilisation of available railway infrastructures for
mitigating incidents and delays. In this paper, we describe an
approach for dealing with the in-station dispatching problem
by means of automated planning techniques.

Introduction
Railways play a significant economical role in our society
for transporting either goods or passengers, but the increas-
ing volume of people and freight transported on railways
is congesting the networks (Bryan, Weisbrod, and Martland
2007). Within a railway network, stations are probably the
most critical points for interconnecting trains’ paths. This is
because, in a station, a number of trains need to stop accord-
ing to a given timetable, and a number of possible routes
are thus occupied, with the concrete risk of accumulating
delays, that may boil down to cost penalties and inconve-
niences for passengers. In this context, in-station train dis-
patching plays a central role in maximising the effective util-
isation of available railway infrastructures and in mitigating
the impact of incidents and delays.

In this abstract we briefly describe an approach for per-
forming in-station dispatching by means of automated plan-
ning techniques. Given the mixed discrete-continuous nature
of the problem, we employ PDDL+ (Fox and Long 2006)
for the specification of the model, and we extend the state-
of-the-art planning engine ENHSP (Scala et al. 2016, 2020)
with customised techniques such as an adaptive notion of
delta, a domain-specific heuristic, and a set of ad-hoc con-
straints. The interested reader is referred to Cardellini et al.
(2021a,b) for additional details and analysis.

We carry out an experimental analysis using real data of
a station of the North West of Italy, provided by Rete Fer-
roviaria Italiana (RFI), that shows the contribution that the
implemented domain-specific techniques may have in effi-
ciently solving the various instances of the problem.

The PDDL+ Domain Model
Informally, the in-station train dispatching problem can be
defined as follows. Given a station infrastructure, a set of
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trains and their current position in the station or expected
time of arrival, find a route for every train that allows to re-
spect the provided timetable, as much as possible.

A railway station can be represented as a graph, composed
by a set of connected track segments, the minimal control-
lable rail units. Sequences of connected track segments are
organised in itineraries; this is manually done by experts of
the specific railway station. A track segment can be occu-
pied by a single train at the time. For safety reasons, a train
is required to reserve an itinerary, and this can be done only
if the itinerary is currently not being used by another train.
A train traverses the railway station by reserving an itinerary
and moving through the corresponding track segments.

The core of the proposed PDDL+ encoding is the way in
which the movement of trains in the railway station is mod-
elled and controlled. A set of dedicated operators allow a
train to reserve an itinerary and to start moving on it. The
use of such operators triggers a process that models the time
needed by the train to reach the end of the itinerary. Over
time, track segments of the itinerary that are not occupied
by the train anymore are released via events. Additional op-
erators allow a train that reached an exit point to leave the
station, and to stop a train at a platform to allow the disem-
barking/embarking of passengers. The duration of the stop
is variable: each type of train has a minimum time that is
required to stop in order to safely allow the movement of
passengers; further, a train is not allowed to leave a platform
before its timetabled leaving time. Finally, an additional op-
erator is used to model the fact that a train has reached its
final destination, and should not move any further.

Dedicated processes are used to keep track of the time
spent by a train (i) navigating an itinerary; (ii) moving from
one itinerary to the next, and (iii) stopping at a platform.

A pivotal point of the PDDL+ model relates to the way
in which the structure of the railway station is encoded. To
avoid the well-known issues of a potentially huge ground
problem (Scala and Vallati 2020), due to the presence of
itineraries, trains, track segments, etc. the domain model is
fully ground for a given problem to solve. The grounding
is done via a pre-processing step that takes into account the
actual structure of the network, and the considered trains.
The structure of the railway station is directly encoded in
the ground actions provided in the domain model.

A planning problem is specified in terms of the initial lo-
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cation of trains, and of the required goal state defined as
the positions that trains must reach. Example models can be
found at https://github.com/matteocarde/icaps2021.

Heuristic Search for Train Dispatching
The ENHSP planning engine (Scala et al. 2016, 2020) has
been used to solve in-station train dispatching problems en-
coded in PDDL+. It is a forward search planning engine
that deals with continuous processes using the Discretise
and Validate approach. ENHSP has been optimised in three
ways: adaptive delta, heuristic, and constraints.
Adaptive Delta. Traditionally, PDDL+ planning engines ex-
ploit a fixed time discretisation step for solving a given in-
stance. In the proposed model, it is possible to know a-priori
when events will be triggered, so it is possible to exactly
predict when the world will change. It is therefore possible
to exploit a dynamic time discretisation. This is similar in
principle to the approach exploited by decision-epoch plan-
ning engines for dealing with temporal planning problems
(Cushing, Kambhampati, and Weld 2007).
Specialised Heuristic. Following the traditional A* search
settings, the cost of a search state z is calculated as f(z) =
g(z)+h(z), where g(z) represents the cost to reach z, while
h(z) provides an heuristic estimation of the cost needed to
reach a goal state from z. In our specialisation, g(z) is cal-
culated as the elapsed modelled time from the initial state to
z. h(z) is a domain-specific heuristic calculated as follows:

h(z) =
∑

t∈T (z)

ρt(z) + πt(z) (1)

where T (z) is the set of trains of the given problem that
did not yet achieve their goals at z. ρt(z) is a quantity that
measures the time that, starting from the current position,
the considered train needs to reach its final destination. The
method πt(z) gives a very high penalisation for each goal of
the considered train t that has not yet been satisfied at z.
Constraints. The planning engine has been extended by ex-
plicitly considering 3 set of constraints. The first set limits
the time a train is allowed to stay in the controlled station.
The other sets limit, respectively, the time passed from the
arrival of the train in the station, and the time spent stopping
at a platform. The idea behind such constraints is to avoid-
ing situations where trains are left waiting for long periods
of time, occupying valuable resources. The maximum times
are calculated a-priori, according to historical data, and de-
pends on the structure of the railway station.

Evaluation
We tested the proposed PDDL+-based approach by exploit-
ing 5 months (January to May 2020) of real-world data of
one medium-sized railway station provided by RFI. The sta-
tion includes 130 track segments (34 track switches), 107
itineraries, 10 platforms, 3 entry and 3 exit points.

Here we focus on assessing the usefulness of the domain-
specific improvements. To perform this analysis, we selected
the day –in February 2020, before the start of the COVID-
19 lockdown in Italy– with the minimum mean squared de-
viation of recorded train timings from the official timetable.
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Figure 1: The CPU-time needed for planning instances with
an increasing number of trains using different combinations
of domain-specific optimisation techniques.

This was done to guarantee that no emergency operations
were executed by the human operators. We considered the
evening peak hour of the day, 17:00-20:00. During the se-
lected time-slot 31 trains moved through the station. We con-
sidered different time windows of the 3-hours period to gen-
erate instances with an increasing number of trains.

Figure 1 shows the CPU planning time required by the 8
combinations to deal with increasingly large instances. The
combination labelled All-Off considers ENHSP run using
the default settings, and none of the optimisation techniques
introduced in this paper. The All-On label indicates instead
the planning engine run using all the optimisations. Finally,
labels AD, Heu, and Const are used to indicate the use of,
respectively, adaptive delta, domain-specific heuristic, and
constraints. The analysis was performed with a cut-off time
of 60 CPU-time seconds, on a 2.5GHz Intel Core i7 Quad-
processors with 16GB of memory made available.

Summarising, the performed experiments indicate that the
use of the specialised heuristic is the single most impor-
tant component of the domain-specific planning engine. The
adaptive delta plays an important role as well, but their syn-
ergic combination allows to solve all evaluated instances.
The use of constraints provides some improvement, but not
as significant as the other elements.

Conclusion
We presented an automatic solution to the in-station train
dispatching problem. We modelled the problem in PDDL+,
and designed a set of domain-specific enhancements that al-
low the ENHSP planning engine to solve complex instances.

As future work, we are interested in extending our ap-
proach to support maintenance operations and preferences,
and to consider different and more complex scenarios. Fi-
nally, we would like to consider alternative approaches, such
as Answer Set Programming (Abels et al. 2020).
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