
Taming Discretised PDDL+ through Multiple Discretisations
Matteo Cardellini1, Marco Maratea2, Francesco Percassi3, Enrico Scala4, Mauro Vallati3

1DIBRIS, University of Genova, Genova, Italy
2DeMaCS, University of Calabria, Rende, Italy

3School of Computing and Engineering, University of Huddersfield, Huddersfield, UK
4Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy

matteo.cardellini@edu.unige.it, marco.maratea@unical.it, f.percassi@hud.ac.uk,
enrico.scala@unibs.it, m.vallati@hud.ac.uk

Abstract

The PDDL+ formalism allows the use of planning techniques
in applications that require the ability to perform hybrid
discrete-continuous reasoning. PDDL+ problems are notori-
ously challenging to tackle, and to reason upon them a well-
established approach is discretisation. Existing systems rely
on a single discretisation delta or, at most, two: a simula-
tion delta to model the dynamics of the environment, and a
planning delta, that is used to specify when decisions can be
taken. However, there exist cases where this rigid schema is
not ideal, for instance when agents with very different speeds
need to cooperate or interact in a shared environment, and a
more flexible approach that can accommodate more deltas is
necessary. To address the needs of this class of hybrid plan-
ning problems, in this paper we introduce a reformulation ap-
proach that allows the encapsulation of different levels of dis-
cretisation in PDDL+ models, hence allowing any domain-
independent planning engine to reap the benefits. Further, we
provide the community with a new set of benchmarks that
highlights the limits of fixed discretisation.

Introduction
The ability to represent hybrid discrete-continuous changes
is crucial for exploiting automated planning techniques in
real-world applications. The PDDL+ language has been in-
troduced and designed to support a compact encoding of
models involving hybrid changes, using specialised con-
structs such as events and processes (Fox and Long 2006).

Hybrid PDDL+ problems are notoriously challenging
to tackle, due to the intertwined nature of numeric vari-
ables and time. A well-established approach to reason upon
hybrid PDDL+ problems is discretisation (Della Penna,
Magazzeni, and Mercorio 2012; Percassi, Scala, and Val-
lati 2023b), which allows breaking down complexity by as-
suming the time is discrete, and so are the actual numeric
changes. A similar assumption is also made in the sim-
pler context of temporal planning through durative actions
(Cushing et al. 2007; Dvorak et al. 2014; Rintanen 2015).
An important aspect of this approach is the ability to re-use
well-established and general search techniques based on for-
ward state-based exploration to tackle PDDL+ problems; it
is indeed widely exploited by existing domain-independent

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planning engines such as DiNo (Piotrowski et al. 2016), UP-
Murphi (Della Penna, Magazzeni, and Mercorio 2012) and
ENHSP (Scala et al. 2016). The first two solvers rely on
only one discretisation step for both simulation (process and
events) and decision (actions), while ENHSP utilises a more
advanced approach that can support two deltas: a (usually
smaller) simulation delta to approximate complex dynamics
and a (usually larger) planning delta to reduce the burden on
planning by avoiding unnecessary decision points.

Notably, there can be cases where even the advanced tech-
nique of using two different discretisation deltas does not en-
able efficient reasoning upon the dynamics of the problem at
hand. In the logistics context, for example, it is common to
have a range of means of transport, each having a different
speed and a different granularity of timings in which actions
must be performed (e.g. a plane is faster than a truck which
is faster than a delivery man) and if the different agents in-
volved have to coordinate, they must necessarily do it at the
discretisation step of the slower one, making the solving un-
necessarily challenging. Even the same agent could benefit
from different granularity in different moments of the plan:
for example, a ship must be finely controlled while manoeu-
vring in the harbour, but its course can be sporadically al-
tered while at open sea. To effectively address the described
class of hybrid problems, approaches capable of supporting
even more than two discretisation deltas are needed.

In this work, we address this need by introducing
a reformulation approach that encapsulates such multi-
ple deltas directly into the PDDL+ models, hence al-
lowing domain-independent planning engines to exploit
the benefits. More precisely, we formally define the dy-
namic planning-discretised PDDL+ problem, and introduce
a sound and complete compilation allowing one to generate
a corresponding PDDL+ model that encodes the notion of
multiple deltas. Any planning engine that supports PDDL+
can reason upon the reformulated models, thus extending the
ability of existing systems to solve challenging hybrid prob-
lems. Further, we present an innovative PDDL+ benchmark
domain, based on a realistic example, that stresses the need
for reasoning with multiple deltas. Our extensive empirical
analysis demonstrates the merits of the introduced reformu-
lation on a range of PDDL+ benchmarks and planning ap-
proaches.

Location ExpA Base Camp Location ExpB

12 12α

Allowed Red Rover Movement

Allowed Green Rover Movement

Initial State

12 12α

Allowed Red Rover Movement

Allowed Green Rover Movement

Goal

Location ExpA Base Camp Location ExpB

Figure 1: A representation of the initial state and goal condition of the COOPROVERS motivating example.

Related Work
PDDL+ is the most expressive formalism of the PDDL
family of languages, which also includes PDDL (McDer-
mott et al. 1998) and PDDL2.1 (Fox and Long 2003). The
modelling capabilities of PDDL+ have enabled the use
of automated planning to solve complex real-world prob-
lems such as traffic control (Vallati et al. 2016; El Kouaiti
et al. 2024), safety requirements for cyber-physical sys-
tems (Aineto et al. 2023), train dispatching (Cardellini et al.
2021), unmanned aerial vehicle control (Kiam et al. 2020),
pharmacokinetic optimisation (Alaboud and Coles 2019),
and popular video games (Piotrowski et al. 2023). Finding
solutions for PDDL+ problems remains a daunting chal-
lenge due to its expressive power, further compounded by
the scarcity of planners capable of effectively handling them.

Existing solvers deal with the continuous nature of Or-
dinary Differential Equations (ODEs) in two ways: either
by (i) solving the underlying integral, or (ii) by discretising
the time horizon and treating the ODEs as discrete sums. In
the first category, solvers like SMTPlan+ (Cashmore, Maga-
zzeni, and Zehtabi 2020) and dReal (Bryce et al. 2015) make
use of SMT techniques and mathematical solvers to solve
the integrals. Due to the mathematical complexity of these
operations, both planners apply restrictions to the possible
set of functions which can be expressed in the ODEs. To
the second category, instead, belongs planners like UPMur-
phi (Della Penna, Magazzeni, and Mercorio 2012), DiNo
(Piotrowski et al. 2016) and ENHSP (Scala et al. 2016)
which make use of the Discretise & Validate approach (Della
Penna, Magazzeni, and Mercorio 2012), allowing them to
deal with a larger set of ODEs functions but being depen-
dant of the discretisation step for the validation of the plan.

Both DiNo and UpMurphi consider a single delta, that is
used for both simulating the evolution of the dynamic en-
vironment and for identifying decision points for planning.
A more advanced approach, presented by (Ramirez et al.
2017) and supported by ENHSP, is to consider two different
deltas: a simulation delta, to be as small as possible to bet-
ter approximate complex hybrid dynamics, and a planning
delta, that can be discretionally large, to reduce the burden
on the planning process by avoiding decision points when
no actions are likely to be applicable. An approach simi-
lar in nature, but domain-specific, has been proposed for the
Train Dispatching Problem (Cardellini et al. 2021), where
the ENHSP planner has been modified to skip irrelevant de-
cision points when controlling the dispatching of trains.

Motivating Example
In this section, we present a novel domain, COOPROVERS,
in which two agents operate at different speeds and need
to coordinate to reach the stated goals. Figure 1 provides
an example of an initial state (left) and a goal condition
(right) in which two rovers (Red and Green) are perform-
ing two experiments (A and B) in two separate locations and
need to exchange a tool. For safety reasons, the rovers are
only allowed to move from the base camp to their work-
ing zone, and hence they can only meet at the base camp to
exchange the mentioned tool. The two rovers are equipped
with a battery and solar panels that allow them to recharge.
Since the location of the Experiment B is α times more
distant from the base camp than that of Experiment A, the
Green rover has been equipped with a lighter, more effi-
cient battery (discharges at 20

α %/m), consuming less than
the Red rover (20%/m) and allowing longer trips. At any
point, while moving between the locations, the rovers can
deploy their solar panels and recharge (at the speed of 1%/s)
for some time before restarting their trip. The battery must
always stay above 20% to allow emergency operations and
the deployment of solar panels. The rovers are also equipped
with a holding container for transporting tools. The speed
of the two rovers is the same (1m/s) but, given the differ-
ences in distances to be covered and discharging rates, their
movements should be modelled and controlled with differ-
ent granularities. For example, with α = 100, the Green
rover would need to move 1.2 km at a velocity of 1 m/s, dis-
charging at 0.2%/m. In this case, it is easy to notice that the
Green robot would benefit more from a discretisation step
one hundred times larger than the Red robot.

Background
A PDDL+ planning problem, denoted by Π, is a tuple
⟨F,X, I,G,A,E, P ⟩, where F is a set of Boolean vari-
ables and X is a set of numeric variables taking values from
{⊤,⊥} and Q, respectively. These variables can be used
in propositional formulas with numeric and Boolean con-
ditions. Numeric conditions are of the form ⟨ξ ▷◁ 0⟩, where
ξ is a numeric expression over X and Q, and ▷◁∈ {≤, <,=
, >,≥}. Boolean conditions are of the form ⟨f = b⟩ with
f ∈ F and b ∈ {⊤,⊥}. A formula is therefore a propo-
sitional formula using standard connectives from logic in-
volving numeric and Boolean conditions. I is the descrip-
tion of the initial state, expressed as a full assignment to
all variables in X and F . G is the description of the goal,

expressed as a formula. A and E are the sets of actions
and events, respectively. An action or event is a pair ⟨p, e⟩,
where p is a formula and e is a set of Boolean or numeric
effects. A Boolean assignment has the form ⟨f := b⟩, where
f ∈ F and b ∈ {⊥,⊤}. A numeric assignment has the form
⟨op, x, ξ⟩, where op ∈ {asgn, inc, dec}, x ∈ X , and ξ is a
numeric expression over X and Q. Specifically, op can be
the contraction of the keywords assign (x := ξ), increase
(x := x + ξ) and decrease (x := x − ξ). P is a set of pro-
cesses and a process is a pair ⟨p, e′⟩, where p is a formula
and e′ is a set of continuous numeric effects expressed as
pairs ⟨x, ξ⟩, where x ∈ X and ξ is a numeric expression de-
fined as above. ξ represents the additive contribution to the
first derivative of x as time flows continuously. In the dis-
crete context, ξ is the additive contribution to the discrete
change of x. Let a = ⟨p, e⟩ be an action, event, or process,
we use pre(a) to refer to the precondition p of a, and eff(a)
to the effect e of a. In the following, we will use a, ρ, and ε
to refer to a generic action, process, and event, respectively.

A PDDL+ plan πt is a pair ⟨π, te⟩, where π =
⟨⟨a1, t1⟩, ..., ⟨an, tn⟩⟩ is a sequence of timestamped actions
and te ∈ Q≥0 is the makespan within the plan π is executed.

A state s is a full assignment of the variables X ∪ F .
An action a (event ε) is applicable (is triggered) in a state
s iff s |= pre(a) (s |= pre(ε)). For describing how a state
changes when an action (event) is executed (triggered) we
use the transition function γ(s, z). Given a state s and an
action/event z ∈ A ∪ E, γ(s, z) denotes the state resulting
from the application of a in s accordingly to the effect eff(z).
The difference between actions and events is that the former
prescribe may transitions under the control of the agent and
can be executed if the current state meets the preconditions,
while the latter prescribe must transitions, i.e., events are
triggered immediately if their preconditions are met.

Following some early works (Shin and Davis 2005; Per-
cassi, Scala, and Vallati 2023b), we formalise the PDDL+
discrete semantics through the notion of time points, histo-
ries and plan projections. Given a discretisation step δ ∈
Q>0, a time point, denoted by T , is a pair ⟨t = δ · n, n′⟩,
where n, n′ ∈ N; t denotes the clock of T while n′ is
the counter used to order actions and events happening at
t. Time points are ordered lexicographically. A history H
over a sequence of time point TH maps each element from
TH into a situation. A situation at time point T is the tu-
ple H(T) = ⟨HA(T),Hs(T)⟩, where HA(T) is the action
executed at time point T (if any) and Hs(T) is the state as-
sociated with T . We denote by Hs(T)[v] and Hs(T)[ξ] the
value assumed by v ∈ F ∪ X and by a numeric expres-
sion ξ, respectively, in state Hs(T). Etrigg(T) indicates the
sequence of events triggered in T . 1

The validity of plans relies on defining the discrete
PDDL+ plan projection, which describes how πt is pro-
jected onto a history, taking into account the effects of ac-
tions and changes yielded by events and processes. This
projection is constructed through two types of transitions:

1We assume event-deterministic PDDL+, meaning that when
multiple events are triggered, we can sequence them arbitrarily, al-
ways resulting in the same outcome (Fox and Long 2006).

instantaneous and temporal. Instantaneous transitions orig-
inate from the execution (triggering) of actions (events),
whereas temporal transitions result from the passage of a
discrete quantum of time. Each transition is associated with
a starting time point and one linked to the resulting state after
the transition. These time points are referred to as significant
(STPs).

Intuitively, we define the plan projection based on a set
of rules that describe how history progresses over time. The
first rule (R1) states that if an event is triggered at a spe-
cific time point, a successor state must exist with the same
clock time and an increased counter. The second rule (R2)
states the same for actions. The third and fourth rules (R3-
R4) are used to ensure that the actions in a PDDL+ plan are
projected, preserving their original ordering. The fifth rule
(R5) is used to describe how numeric variables change over
time in a discrete fashion when time advances by a discrete
quantity. Notably, continuous numeric changes are discre-
tised according to the formula ∆(ξ, δ) = δ · ξ.
Definition 1 (Discrete PDDL+ Plan Projection). Let Π be
a PDDL+ problem, δ ∈ Q>0 a discretisation step, H an
history and πt = ⟨π, te⟩ a plan for Π. We say that H is a
discrete projection of πt which starts in I iff H induces the
STPs TH = ⟨T0 = ⟨t0 = 0, 0⟩, ..., Tm = ⟨tm = te, nm⟩⟩,
where either ti+1 = ti+ δ or ti+1 = ti,Hs(T0) = I and, for
all i ∈ {0, ...,m}, the following rules hold:

R1 [Instantaneous Transition (events)] Etrigg(Ti) ̸= ⟨⟩
iff Hs(Ti+1) = γ(Hs(Ti), Etrigg(Ti)), HA(Ti) = ⟨⟩,
ti+1 = ti and ni+1 = ni + 1;

R2 [Instantaneous Transition (actions)] HA(Ti) ̸= ⟨⟩
iff Hs(Ti+1) = γ(Hs(Ti),HA(Ti)), Etrigg(Ti) = ⟨⟩,
ti+1 = ti and ni+1 = ni + 1;

R3 [Action Projection] ⟨ai, ti⟩ ∈ π iff it exists one and
only one Ti = ⟨t′, n⟩ ∈ TH s.t HA(Ti) = ⟨ai⟩ and t′ =
ti;

R4 [Actions Ordering] for each ⟨ai, ti⟩, ⟨aj , tj⟩ in π, with
i < j and ti = tj there exists Tk, Tz in TH such that
HA(Tk) = ⟨ai⟩ and HA(Tz) = ⟨aj⟩ and where tk =
tz = ti and nk < nz;

R5 [Temporal Transition] for each pair of contiguous
STPs Ti = ⟨ti, ni⟩, Ti+1 = ⟨ti+1, ni+1⟩ such that
ti+1 = ti + δ, we have that ni+1 = 0 and the value
of each numeric variable x ∈ X is updated as:

Hs(Ti+1)[x] = Hs(Ti)[x] +
∑

⟨x′,ξ⟩∈eff(ρ), x′=x
ρ∈P s.t.Hs(Ti)|=pre(ρ)

Hs(Ti)[∆(ξ, δ)]

and values of unaffected variables remain unchanged
(frame-axiom).

Definition 2 (Valid PDDL+ plan under δ discretisation). πt

is a valid plan for Π under δ discretisation iff Hs(Tm) |=
G and, for each T ∈ TH such that HA(T) = ⟨a⟩, then
Hs(T) |= pre(a).

Motivating example (cont’d). We are now in the po-
sition to illustrate how to model2 the COOPROVERS do-
main using PDDL+. The movement of a rover r from

2The full PDDL+ formulation is available at https://github.
com/matteocarde/ICAPS24-Delta.

two connected locations a and b is managed through
the triplet of action startMoving(r,a,b), process
moving(r,a,b), and event endMovement(r,a,b).
The moving(r,a,b) action is active only when the bat-
tery is above the threshold of 20% and keeps updating a
variable dRun(r,a,b) whose role is to track the progress
of the rover in going from a to b. During the movement,
process discharge(r) models the draining of the bat-
tery, and does so with a rate of cRate(r). The plan-
ning engine can decide to interrupt and restart the move-
ment through action startCharging(r) and action
stopCharging(r), respectively. Between these two ac-
tions, the process charging(r) gets activated, and the
rover battery charges with a rate of 1%/s. To collect and
exchange tools, the actions drop(r,o) and pick(r,o)
model the handling of the object o by rover r. In the initial
condition, the robots are set in the configuration shown in
Figure 1 (left). The goal is to reach a state where the tool
has been brought to the location of Experiment B (Figure 1
(right)).

Dynamic Planning-Discretised PDDL+
To address the kind of hybrid problems that require the abil-
ity to deal with different dynamics, here we characterise the
dynamic planning-discretised PDDL+ problem.

A dynamic planning-discretised PDDL+ problem (short-
ened as PDDLδ+ problem) is the tuple ⟨Π,Kδ = ⟨J,∇⟩⟩,
where Π is a PDDL+ problem defined as above and Kδ

is the discretisation knowledge detailed as follows. J is a
function A ∪ E → {1, ...,m} which partitions the set of
actions and events in m classes such that A =

⋃m
j=1 Aj

and E =
⋃m

j=1 Ej , where Aj = {a ∈ A | J(a) = j}
and Ej = {ε ∈ E | J(ε) = j}. The number of par-
titions induced by J defines the number of discretisation
variables, i.e., δm = {δ1, ..., δm}, with each of them tak-
ing values in Q>0. Intuitively, every δj manages a different
aspect of the problem by controlling when actions from Aj

can be executed. ∇ is the function which controls the dy-
namic of the discretisation steps, that is, how the δm vari-
ables change according to the actions applied and the trig-
gered events. Such a function maps every action and event
into a positive rational number plus a special symbol κ, i.e.,
∇ : A ∪ E → Q>0 ∪ {κ}; the special symbol κ is the
persist value, and it represents that the affected discretisa-
tion variable remains unchanged when an action (event) z
with ∇(z) = κ is applied (triggered). With a little abuse
of notation, we allow the ∇ function to also accept the ini-
tial state as input and return a full assignment of δm, i.e.,
∇(I) = {⟨δi := δ0i ⟩ | δi ∈ δm}. This allows us to initialise
the discretisation variables in the initial state.

A discretisation knowledge Kδ may induce a non-
deterministic behaviour w.r.t. events. In particular, it is
known that events can generate non-determinism in PDDL+
problems (Fox and Long 2006) and this can also affect
the discretisation variables δm. That said, we define a dis-
cretisation knowledge Kδ as event-deterministic iff for each
state s, and for all ε, ε′ ∈ E where J(ε) = J(ε′) and
s |= pre(ε)∧pre(ε′), it holds that ∇(ε) = ∇(ε′). In simpler

terms, for any pair of events belonging to the same partition
that can be triggered simultaneously, the ∇ function consis-
tently prescribes the same discretisation value.

Intuitively, solving a PDDLδ+ problem ⟨Π,Kδ⟩ consists
in finding a valid PDDL+ plan for Π such that every exe-
cuted action is compatible with the discretisation steps pre-
scribed by Kδ .

To formally define the semantics of PDDLδ+, we begin
by introducing a new set of m memory variables denoted
as {Mj = ⟨t̂j , δj⟩ | j ∈ {1, ...,m}}. Each element in this
set is a pair of positive rational numbers. Essentially, for a
given partition j ∈ {1, ...,m}, the first component of Mj ,
i.e., t̂j , represents the most recent timestamp at which an
action (event) from Aj (Ej) was executed (triggered). The
second component, i.e., δj , indicates the latest discretization
step assigned to partition j based on the ∇ function. The
combination of these two elements determines all the fol-
lowing timestamps in which the actions from each partition
are applicable.

We now extend the definition of a history to keep track of
the memory variables introduced so far. To be specific, given
a historyH,HK(T) specifies a full assignment to the mem-
ory variables at time point T . We denote by HK(T)[Mj]

the value assumed by Mj = ⟨t̂j , δj⟩ at T . In the plan pro-
jection, for the first STP, such an assignment is equal to
HK(T0) = {⟨t̂j = 0, δj = δ0j ⟩ | j ∈ {1, ...,m}}. Fur-
thermore, HK is updated whenever an action is executed
or an event is triggered, while it persists when time flows.
Whenever an action a from partition j (a ∈ Aj) is applied
at time ti (R2 applies), the variable t̂j is updated to ti to
keep track of the most recent timestamp when an action from
Aj was executed. Simultaneously, the discretisation variable
δj is updated based on ∇(a): if ∇(a) is equal to κ (persist
value), the current discretisation value is retained; otherwise,
it is modified. When an event ε from partition j (ε ∈ Ej) is
triggered at time ti (R1 is applied), the variables t̂j and δj
are updated to ti and ∇(ε), respectively, only if ∇(ε) ̸= κ.
Otherwise, the current values of Mj are retained. Definition
1 is extended by reshaping R1-R2, which are responsible for
handling actions and events.
Definition 3 (Discrete PDDLδ+ Plan Projection). The dis-
crete PDDLδ+ plan projection of plan πt is defined in the
same way as a discrete PDDL+ plan projection, except for
R1 and R2 which are extended as follows:

R1 Etrigg(Ti) ̸= ⟨⟩ iff Hs(Ti+1) = γ(Hs(Ti), Etrigg(Ti)),
HA(Ti) = ⟨⟩, ti+1 = ti and ni+1 = ni + 1;
furthermore, given ε in Etrigg(Ti), HK(Ti+1)[MJ(ε)] =
⟨UT(ε),UD(ε)⟩;

R2 HA(Ti) = ⟨a⟩ iff Hs(Ti+1) = γ(Hs(Ti),HA(Ti)),
Etrigg(Ti)) = ⟨⟩, ti+1 = ti and ni+1 = ni + 1; further-
more, HK(Ti+1)[MJ(a)] = ⟨ti,UD(a)⟩.

The functions used for updatingHK(Ti+1) are defined as:

UT(z) =

{
ti if ∇(z) ̸= κ

tlast otherwise

UD(z) =

{
∇(z) if ∇(z) ̸= κ

δlast otherwise

m = 1 m > 1
∇ is globally flat Unitary-Static Multiple-Static
∇ is not globally flat Unitary-Dynamic Multiple-Dynamic

Table 1: Different levels of discretisation control allowed by
the discussed PDDLδ+ framework.

where ⟨tlast, δlast⟩ = HK(Ti)[MJ(z)] and z ∈ A ∪ E.

There is also the need to extend Definition 2 for the
PDDLδ+ plan validity. In particular, a plan πt is valid for
a PDDLδ+ problem ⟨Π,Kδ⟩ iff πt is valid for Π and every
action of πt is executed in a time-stamp compatible with Kδ .

Definition 4. A PDDL+ plan πt is valid for a PDDLδ+
problem ⟨Π,Kδ⟩ iff πt is valid for Π and for each T =
⟨t, n⟩ ∈ TH such that HA(T) = ⟨a⟩, there exists an
s ∈ N such that t = tlast + s · δlast, where ⟨tlast, δlast⟩ =
HK(T)[MJ(a)].

Levels of Discretisation Control
Different levels of discretisation control can be achieved
based on the definition of Kδ , formalised as follows. In par-
ticular, we consider two dimensions: the number of parti-
tions of A ∪ E induced by J , i.e., m, and the dynamic of ∇
for each partition. If m = 1, Kδ induces a unitary PDDLδ+
problem while, if m > 1, a multiple one. If the function
∇(z) = κ for each z ∈ Aj∪Ej we say that ∇ is flat w.r.t. the
partition j, otherwise is not. When ∇ is flat for each parti-
tion (globally flat), we say that Kδ induces a static PDDLδ+
problem, otherwise a dynamic one. Table 1 shows the differ-
ent levels of discretisation control that can be achieved using
the PDDLδ+ framework.

Most of the PDDL+ discrete planning engines leverage a
unique discretisation step δe, both to model the granularity
of the environmental changes and the agent’s actions. Such
a model can be expressed within the PDDLδ+ framework
by a discretisation knowledge Kδ in which the function J
induces a single partition so that, J(z) = 1 for each z ∈
A ∪ E, there is a single discretisation step δ1 = {δ1} that
is initialised as {⟨δ1 := δe⟩} and finally ∇(z) = κ for each
z ∈ A ∪ E.

ENHSP goes one step further in the direction of handling
PDDL+ models with multiple discretisation steps. It sep-
arates the discretisation step for controlling the granularity
of environmental changes δe and the one for controlling the
granularity of the agent’s actions δp. Such a model is useful
when it is necessary to have a fine approximation of the envi-
ronmental dynamics while the agent, being characterised by
a slower dynamic, performs actions more sporadically. Such
a model can be expressed within the PDDLδ+ framework
by a Kδ in which the function J induces a single partition
so that, J(z) = 1 for each z ∈ A ∪ E, there is a single dis-
cretisation step δ1 = {δ1} that is initialised as {⟨δ1 := δp⟩}
and finally ∇(z) = κ for each z ∈ A ∪ E.

We have shown that the discretisation models currently
supported by the PDDL+ discrete planning engines fall in
the Unitary-Static level of our framework. All models out-
side this are not supported by existing PDDL+ reasoners.

Motivating example (cont’d). We now show how
the discretisation knowledge Kδ can be expressed
in the COOPROVERS domain. Intuitively, the ac-
tions and events can be partitioned by the rover
which performs the action or is subject to the
events. For example, J(startCharging(red))
and J(startMoving(red,expA,bc)) are set
equal to 1 and J(startCharging(green)) and
J(startMoving(green,expB,bc)) equal to 2.
This partition induces the set δ2 = {δ1, δ2}. The
function ∇ is set to allow for (i) differentiating the
various time scales of the two rovers when they are
moving, and (ii) allowing for the same timescale
when the two rovers are charging. For this reason,
∇(startMoving(red,expA,bc)) (and the symmet-
ric action for moving from bc to expA) is set to 3 while
∇(startMoving(green,expB,bc)) (and symmetric)
is set to 3α, allowing for (i). ∇(startCharging(red))
and ∇(startCharging(green)) are all set to 30, al-
lowing for (ii). For all the other actions and events, ∇ returns
κ. The initial condition sets the initial deltas to their respec-
tive delta of movements: ∇(I) = {⟨δ1 := 3⟩, ⟨δ2 := 3α⟩}.
Since m = 2 and the ∇ function is not flat, the motivating
example falls in the Multiple-Dynamic discretisation control
level, i.e., the most general among the introduced levels.

Encoding of Kδ in PDDL+
Let ⟨Π = ⟨F,X, I,G,A,E, P ⟩,Kδ = ⟨J,∇⟩⟩ be a
PDDLδ+ problem. We introduce the FLAT translation,
that produces an equivalent PDDL+ problem ΠFLAT =
⟨F,Xδ, Iδ, G,Aδ, Eδ, Pδ⟩, whose components are pre-
sented in Figure 2. Equation (1) augments the set of numeric
predicates X with new fluents, producing Xδ . The fluent ck
represents the clock of the system, which keeps track of the
flow of time. Two fluents δj and tkj are inserted for every
partition induced by J : the fluent δj keeps track of the value
of the discretisation step of the actions of the partition j dur-
ing the plan and tkj keeps track of the next time an action
will be applicable in that partition (tk stands for tick). Equa-
tion (2) expands the initial state of the original problem with
(i) the set given by ∇(I), which states the initial value of δm,
and (ii) the initialisation of the clock and all the ticks of the
system to zero. Equation (3) redefines every original action
a of Π, augmenting its precondition with a condition enforc-
ing the action to be applicable only when the clock reaches
the correct point, established by the value of tkJ(a); here
J(a) returns the index of the partition containing a. Both
in Equation (3) and Equation (4), the effects set of an ac-
tion or an event h is augmented with the set u(h), defined in
Equation (5), in which (i) the value of δJ(h) is changed to its
respective value defined by ∇(h) only if its value is differ-
ent from the persist value κ, and (ii) the value of tkJ(h) is
reset to realign the ticks with the correct value of δJ(h) set
by ∇(h) (this is because the ticks do not constrain events).
Equation (4) also adds n novel events ticj , defined in Equa-
tion (6), which represent the metronome of the system: the
event ticj is fired when the value of the clock ck has just
surpassed the value of tkj by the simulation delta of the

Xδ = X ∪ {ck} ∪
m⋃

j=1

{δj ,tkj} (1)

Iδ = I ∪∇(I) ∪ {⟨ck := 0⟩} ∪
m⋃

j=1

{⟨tkj := 0⟩} (2)

Aδ =
⋃
a∈A

{⟨pre(a) ∧ ⟨ck = tkJ(a)⟩, eff(a) ∪ u(a)⟩} (3)

Eδ =
⋃
ε∈E

{⟨pre(ε), eff (ε) ∪ u(ε)⟩} ∪
m⋃

j=1

{ticj} (4)

u(h) =

{
∅ if ∇(h) = κ

{⟨δJ(h) := ∇(h)⟩, ⟨tkJ(h) := ck⟩} otherw.
(5)

ticj = ⟨⟨ck = tkj + δe⟩, {⟨tkj := ck+ δj − δe⟩}⟩ (6)
Pδ = P ∪ {t} (7)

t = ⟨
∨
p∈P

pre(p), {⟨inc,ck, δe⟩}⟩ (8)

Figure 2: Components of the ΠFLAT PDDL+ problem

planner δe (i.e., we are in the falling edge) and, in the ef-
fects, it sets the timing (tkj) in which the raising edge will
happen again, taking into consideration the already passed
simulation delta. Finally, in Equations (7) and (8), a new
process t is added, whose job is to increase the value of the
clock ck by the simulation delta δe.

It is worth noting that the FLAT translation yielding ΠFLAT

is polynomial on the size of ⟨Π,Kδ⟩. Specifically, FLAT
introduces 2m + 1 numerical variables (δj , tkk for each
j ∈ {1, ...,m} and ck), m events ticj , where m is the
number of partitions of A ∪ E induced by J , and a single
process, i.e., t. Additionally, the preconditions and effects
of actions/events are extended with at most 2 numeric con-
ditions and effects. Also, it is easy to see that FLAT preserves
the length of a plan exactly; as highlighted by (Nebel 2000),
this is a desired property when we talk about compilation
from one planning problem into another.

Theorem 1 (Soundness and Completeness of FLAT w.r.t.
⟨Π,Kδ⟩). Let ⟨Π,Kδ⟩ be a PDDLδ+ problem and let ΠFLAT

be the PDDL+ obtained by using FLAT. ⟨Π,Kδ⟩ admits a
solution iff ΠFLAT does so.

Proof Sketch. (⇒) Let πt = ⟨π, te⟩ be a valid plan for
⟨Π,Kδ⟩, and let π′

t = ⟨πFLAT, te⟩ be the plan for ΠFLAT con-
structed in such a way that: for each i-th time-stamped action
⟨ai, ti⟩ in π, there exists an i-th time-stamped action ⟨a′i, ti⟩
in πFLAT, where a′i ∈ Aδ is the action ai ∈ A extended with
the preconditions and effects introduced by FLAT.

To prove that π′
t is a valid plan for ⟨Π,Kδ⟩, we approach

the proof modularly. Firstly, we note that the problem ΠFLAT

is an extended version of Π. Therefore, FLAT does not affect
the original part of the problem and π′

t achieves G.
The important part to prove is that the actions generated

by the mapping above are applicable w.r.t. the novel vari-
ables. Let H and H′ be the plan projections generated by πt

and π′
t, respectively. A key element is to prove that the dis-

cretisation variables δm evolve in the same way inH andH′.
It is worth noting that in the case of H, the assignments of
δm are explicitly kept withinH, whereas inH′, they are vari-
ables that are part of the problem ΠFLAT. Specifically, the δm
variables of HK change when an action (event) is applied
(triggered) according to the updating rules R1-R2 of Def-
inition 3, and remain unchanged in other cases. Similarly,
the δm ⊂ Xδ variables of ΠFLAT change whenever an action
(event) from Aδ (Eδ) is applied (triggered). Given the defini-
tions of R1 and R2, along with the actions Aδ and events Eδ ,
it is evident that the δm variables are synchronised across all
STPs in bothH and H′.

Now, it remains to prove that the actions of πFLAT are ap-
plicable. Since FLAT does not affect F ∪X of Π, the proof
focuses only on the new variables {ck} ∪

⋃n
j=1{δj , tkj}.

Additionally, it is important to note that for a given parti-
tion Aj of A, each compiled action from Aj only affects
and is affected by tkj and δj . Therefore, since the parti-
tions of actions of Aδ do not affect each other, we build the
proof by examining a single partition and then generalise
the result. So, for a given partition j, let T j

K = ⟨T1, ..., Tnj
⟩

(T j
FLAT = ⟨T ′

1, ..., T
′
nj
⟩) be the sequence of STPs in H (H′)

associated with the application of the nj actions from the
partition j. We prove by induction that the actions applied in
T j

FLAT are applicable. The case base (i = 1) trivially proves
if t1 = 0. If t1 > 0, we leverage that, (i) Iδ |= ⟨tkj =
0⟩ ∧ ⟨ck = 0⟩, (ii) HK(T1)[Mj] = HK(T0)[Mj] = ⟨0, δ0j ⟩
and then t1 = s · δ0j and (iii) for each T ′

0 ≤ T ′ ≤ T ′
1,

H′
s(T

′)[δj] = δ0j . Combining these conditions, we obtain
that in [0, t1] the event ticj is triggered s = t1/δ

0
j times

in the STPs T ′ = ⟨z · δ0j + δe⟩, where z ∈ {0, ..., s − 1}.
When z = s − 1 and ck = (s − 1) · δ0j + δe, ticj sets
tkj = ck + δ0j − δe = s · δ0j . Such a value persists until
t1 is reached, so that H′

s(T
′
1) |= ⟨ck = tkj⟩ |= pre(a′i).

For the induction step, we assume truly the statement for
some 1 < i < nj and prove this for i + 1. If ti+1 = ti,
it is easy to see that a′i+1 is applicable if a′i is too (in-
ductive hypothesis). If ti+1 > ti, we leverage that, (i)
H′

s(T
′
i) |= pre(a′i) |= ⟨ck = tki⟩ (inductive hypothe-

sis), (ii) H′
K(T ′

i) = ⟨ti,∇(ai) = δij⟩ and (iii) for each
T ′
i < T ′ ≤ T ′

i+1, H′
s(T

′)[δj] = δij . Similarly to the case
base, combining these conditions, we obtain that in [ti, ti+1]
the event ticj is triggered s = (ti+1 − ti)/δ

i
j times in the

STPs T ′ = ⟨ti+z ·δj+δe, n
′⟩, where z ∈ {0, ..., s−1}, thus

obtaining a stateH′
s(Ti+1) |= ⟨ck = tkj⟩ |= pre(a′i+1).

(⇐) We can proceed in the opposite direction, and hence
observing that, starting from a valid plan π′

t = ⟨π′, ⟨0, te⟩⟩
for ΠFLAT, we can create a valid plan πt = ⟨π, ⟨0, te⟩⟩ for
⟨Π,Kδ⟩. The validity of πt can be deduced by the validity of
π′
t and in particular by noting that each action in π′

t implies
that the corresponding action is applicable in πt therein.

Since ΠFLAT is an extension of Π, which does not alter the
original problem, it is easy to see that any solution for ΠFLAT

is also a solution for Π. However, the converse is not true, as

100 101 102 103 104 105

Distance between Base Camp and Location ExpB (α)

0

100

200

300

R
u

n
T

im
e

(s
)

U −Kδ
U − 1δ

E − 1δ

E − 2δ

E −Kδ

Figure 3: Average runtime (CPU-time seconds) achieved by search approaches implemented in ENHSP (E) and UPMurphi (U)
while relying on different discretisation approaches on the COOPROVERS benchmarks.

all plans with timed actions that are incompatible with Kδ

do not admit a corresponding valid one in ΠFLAT.
Corollary 1 (Soundness of FLAT w.r.t. Π). Let ⟨Π,Kδ⟩ be
a PDDLδ+ problem and let ΠFLAT be the PDDL+ obtained
by using FLAT. ΠFLAT admits a solution if Π does so.

Experimental Analysis
Our experimental analysis aims at assessing how the pro-
posed encoding can affect the performance of PDDL+
domain-independent planning engines. This is done by con-
sidering two sets of benchmarks. The first set focuses on
the COOPROVERS, where the use of the proposed encod-
ing is expected to deliver a significant performance boost
due to the characteristics of the domain. The second set of
experiments is performed on well-known PDDL+ bench-
mark domains with the aim of analysing how our approach
behaves in the Unitary-Static setting (i.e., only one con-
stant discretisation step). The automatic translation from
a PDDL+ domain and problem file and a discretisation
knowledge Kδ (defined via a JSON file) to a PDDLδ+
problem file has been implemented in the PATTY solver
(Cardellini, Giunchiglia, and Maratea 2024). 3

Due to the nature of the proposed approach, we focus
on planning engines that leverage on discretisation to solve
PDDL+ problems. Therefore, we consider two state-of-the-
art domain-independent planning engines: ENHSP (Scala
et al. 2016) and UPMurphi (Della Penna, Magazzeni, and
Mercorio 2012). ENHSP incorporates a range of heuris-
tics and search techniques, hence providing the ideal ground
to compare them within the same infrastructure. UPMurphi
shed some light on how a radically different approach to dis-
cretised PDDL+ can be affected by the proposed transla-
tions. In our analysis, we used the default A∗ search paired
with the default aibr heuristic (Scala et al. 2016), the add
heuristic (Scala, Haslum, and Thiébaux 2016), and a tra-
ditional blind search. UPMurphi is based on the planning
via model-checking paradigm which automatically trans-
lates discretised PDDL+ to a model-checking formulation,
and then uses blind search to find a solution. The planner
DiNo (Piotrowski et al. 2016), which is built on top of the

3All benchmarks are available at https://github.com/
matteocarde/ICAPS24-Delta

UPMurphi framework, did not find any solution to the con-
sidered benchmarks in the given time limit, and hence we
excluded it from the analysis. Experiments are run on a 2.3
GHz Intel Xeon 6140M, with a 300 CPU-time seconds cut-
off time, and 8 GB RAM.

Multiple-Dynamic
In the COOPROVERS domain model, choosing the right dis-
cretisation step is critical to efficiently generate a valid plan:
larger discretisation can lead to draining the battery of the
fastest robot. Indeed, to plan faster when the value of α be-
comes larger, one may consider using a larger discretisation
step, proportional to α. However, this approach can be prob-
lematic, as the nearest and fastest robot may not have the
possibility to charge before its battery is drained. On the
other hand, the use of a smaller discretisation step makes
the search space deeper and requires more resources to be
explored. Figure 3 shows the results achieved by the consid-
ered planning engines when a range of discretisation options
are exploited: 1δ, the traditional approach in which there is
a unique discretisation step to model the granularity of the
agent and the environment, i.e., δe = δp = 1; 2δ, the ap-
proach where the planner natively decouples environment
and agent by using δe = 1 and δp = 3 (available only in
ENHSP), and the proposed Kδ approach. The Kδ approach
is run with δe = 1 over the PDDL+ problems obtained by
using the FLAT translation and exploiting the discretisation
knowledge provided for the motivating example in the cor-
responding section. The ENHSP solver has been run with
several heuristics (i.e., add, aibr, mrp) and strategies (i.e.,
A∗ and GBFS), and we show in the plot the minimum run
time among all these strategies for each α. It can be noted by
the line chart how the presented approach better deals with
the large value of α, allowing to always solve faster than
the 2δ approach. The performance improvement is more
pronounced when a blind search is used, as in the case of
UPMurphi, where the improvements are noticeable already
with small values of α. The displayed results confirm that
the proposed approach can effectively support the reasoning
of domain-independent planning engines in cases where dy-
namics evolving at different speeds are present in a single
planning problem. Further, as a by-product of this work, we
note that the newly introduced COOPROVERS domain can

Baxter Descent HVAC LinearCar SolarRover
1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ 1δ 2δ Kδ

E+AIBR RT (s) 99.3 8.6 19.4 29.7 1.8 5.7 278.3 153.8 172.9 255.1 119.0 131.6 300.0 245.1 287.5
Cov. % 73.6 100.0 94.7 5.0 100.0 100.0 10.0 65.0 55.0 15.0 64.6 60.4 0.0 20.0 5.0

E+HADD RT (s) 126.9 0.1 16.8 300.0 205.6 263.4 300.0 2.1 61.7 300.0 285.8 300.0 300.0 198.4 275.1
Cov. % 57.9 100.0 94.7 0.0 35.0 15.0 0.0 100.0 85.0 0.0 5.0 0.0 0.0 60.0 15.0

E+BLIND RT (s) 289.5 139.4 212.0 300.0 216.8 269.2 300.0 300.0 300.0 300.0 285.6 300.0 300.0 286.4 296.3
Cov. % 5.3 57.9 36.8 0.0 30.0 15.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 5.0 5.0

U+BLIND RT (s) 300.0 - 258.7 285.9 - 20.1 300.0 - 297.1 300.0 - 149.5 300.0 - 300.0
Cov. % 0.0 - 15.8 5.0 - 100.0 0.0 - 5.0 0.0 - 54.2 0.0 - 0.0

Table 2: Average runtime (RT, CPU-time seconds) and coverage (Cov.) achieved by informed and uninformed search approaches
implemented in ENHSP (E) and UPMurphi (U) while relying on different discretisation approaches on well-known benchmark
domains. Average runtime (RT) considers unsolved instances as cut-off time (300 seconds).

provide some interesting test-bed for the planning commu-
nity, to assess aspects of the planning capabilities of domain-
independent approaches that were not considered before.

Unitary-Static
In these settings, we aim to understand if, on well-known
benchmark instance: (i) the proposed approach can improve
the performance of general domain-independent planning
engines, and (ii) the proposed approach allows achieving
performance that are comparable to those of a planning en-
gine natively exploiting a dual discretisation. We consider
the well-known benchmark domains of Baxter, Descent,
HVAC, LinearCar, and Rover.

Table 2 provides an overview of the results. Every ap-
proach is run using δe = 0.1; 2δ and Kδ discretise the
agent’s action with δp = 1, the first natively on the plan-
ner side and the second via translation by setting J(h) = 1
and ∇(z) = 1 ∀z ∈ A ∪ E; finally, 1δ employs δp = 0.1.

Remarkably, the use of Kδ allows all the considered plan-
ning systems to perform significantly better than when the
standard 1δ techniques are in use. Often, this is not only
reflected in better runtimes, but also in higher coverage.
This strongly indicates that, even in domains where a sin-
gle delta may seem to be appropriate, an intelligent use of
multiple deltas can be beneficial; further, our approach can
allow any planning engine to directly benefit from it. Fi-
nally, the comparison against the 2δ technique implemented
in ENHSP shows that the use of the proposed reformulation
of PDDL+ does not add a significant computational over-
head. Of course, techniques that are encoded in a planning
engine lead to better performance, but it is worth reminding
that Kδ gives more flexibility and the possibility to tailor the
discretisation step for multiple dynamics.

Discussion
It is well-known that, in general, finding a suitable discreti-
sation for a continuous system is a challenging task (Della
Penna, Magazzeni, and Mercorio 2012). On the one hand,
a finer discretisation leads to a more accurate approxima-
tion of the continuous behaviour. On the other hand, a more
coarse discretisation reduces the size of the search space
and fosters solvability. This problem is, of course, exacer-
bated in approaches where multiple deltas need to be set,
i.e. ENHSP or the solution proposed in this paper. How-
ever, it is worth noting that in many practical cases, it is easy
to find suitable discretisation values, that can be implied by

system constraints or by domain knowledge. When multiple
agents or systems need to interact, an analysis of the great-
est common divisor and of the minimum common multiple
among considered delta values for the agents can shed some
light on promising values to be used to ensure a good ap-
proximation of the interaction points among agents. In ex-
treme cases, where the application domain or the charac-
teristics of the problem at hand do not easily allow identify-
ing suitable discretisation values, the methodology proposed
by Della Penna, Magazzeni, and Mercorio (2012) is to start
with a coarse discretisation and refine it until the approxi-
mation error is within an acceptable threshold. The overall
plan-validate framework can support this approach, and has
been extensively evaluated in PDDL+ hybrid planning (Per-
cassi, Scala, and Vallati 2023a).

Conclusion
Discretisation is a well-established approach to reason upon
challenging hybrid PDDL+ problems. The vast majority
of existing approaches are based on a single discretisation
step, and ENHSP is the only approach that can leverage
two different discretisation steps in a domain-independent
fashion. With the aim of taming complex PDDL+ prob-
lems where multiple deltas are needed to efficiently gener-
ate solutions, in this paper we presented a reformulation ap-
proach that allows any domain-independent planning engine
to exploit multiple discretisation steps. The formalised no-
tion also allowed us to categorise different levels of discreti-
sation control. The performed experimental analysis high-
lights the benefits of the discretisation knowledge Kδ in
problems characterised by the coexistence of different dy-
namics, and also shows the capabilities of the approach on
well-known PDDL+ benchmark domains. Our experimen-
tal analysis also indicates that the existing benchmarks for
PDDL+ lack of variety in terms of modelled dynamics; our
motivating example fills this gap, and the proposed approach
can equip existing planning engines with the means to solve
this class of hybrid planning problems.

As future work, we are interested in investigating ap-
proaches that can cover the whole range of discretisation
control levels shown in Table 1. We also plan to explore the
synergies that can be generated between multiple discreti-
sation reformulations and domain-independent heuristics, to
design models that can generate search spaces easier to be
navigated by planning engines.

Acknowledgements
Francesco Percassi and Mauro Vallati were supported
by a UKRI Future Leaders Fellowship [grant number
MR/T041196/1]. Enrico Scala was supported by Climate
Change AI project (No. IG-2023-174), and by the EU
H2020377 project AIPlan4EU (No. 101016442).

References
Aineto, D.; Scala, E.; Onaindia, E.; and Serina, I. 2023. Fal-
sification of Cyber-Physical Systems Using PDDL+ Plan-
ning. In Proc. of ICAPS, 2–6.
Alaboud, F. K.; and Coles, A. 2019. Personalized Medica-
tion and Activity Planning in PDDL+. In Proc. of ICAPS,
492–500.
Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P.
2015. SMT-Based Nonlinear PDDL+ Planning. In Proc.
of AAAI, 3247–3253.
Cardellini, M.; Giunchiglia, E.; and Maratea, M. 2024. Sym-
bolic Numeric Planning with Patterns. In Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI 2024,
Washington, DC, USA, February 7-14, 2023. AAAI Press.
Cardellini, M.; Maratea, M.; Vallati, M.; Boleto, G.; and
Oneto, L. 2021. In-Station Train Dispatching: A PDDL+
Planning Approach. In Proc. of ICAPS, 450–458.
Cashmore, M.; Magazzeni, D.; and Zehtabi, P. 2020. Plan-
ning for Hybrid Systems via Satisfiability Modulo Theories.
J. Artif. Intell. Res., 67: 235–283.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is Temporal Planning Really Temporal? In
Proc. of IJCAI, 1852–1859.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012. A
universal planning system for hybrid domains. Applied In-
telligence, 36(4): 932–959.
Dvorak, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In Proc. of ICTAI,
115–121.
El Kouaiti, A.; Percassi, F.; Saetti, A.; McCluskey, L.; and
Vallati, M. 2024. PDDL+ Models for Deployable yet Ef-
fective Traffic Signal Optimisation. In Proc. of ICAPS (to
appear).
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res., 20: 61–124.
Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J. Artif. Intell. Res., 27:
235–297.
Kiam, J. J.; Scala, E.; Javega, M. R.; and Schulte, A. 2020.
An AI-Based Planning Framework for HAPS in a Time-
Varying Environment. In Proc. of ICAPS, 412–420.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - The
Planning Domain Definition Language.
Nebel, B. 2000. On the Compilability and Expressive Power
of Propositional Planning Formalisms. J. Artif. Intell. Res.,
12: 271–315.

Percassi, F.; Scala, E.; and Vallati, M. 2023a. Fixing Plans
for PDDL+ Problems: Theoretical and Practical Implica-
tions. In Proc. of ICAPS, 324–333.
Percassi, F.; Scala, E.; and Vallati, M. 2023b. A Practical
Approach to Discretised PDDL+ Problems by Translation
to Numeric Planning. J. Artif. Intell. Res., 76: 115–162.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2016. Heuristic Planning for PDDL+ Domains. In
Proc. of IJCAI, 3213–3219.
Piotrowski, W.; Sher, Y.; Grover, S.; Stern, R.; and Mohan,
S. 2023. Heuristic Search for Physics-Based Problems: An-
gry Birds in PDDL+. In Proc. of ICAPS, 518–526.
Ramirez, M.; Scala, E.; Haslum, P.; and Thiebaux, S. 2017.
Numerical integration and dynamic discretization in heuris-
tic search planning over hybrid domains. arXiv preprint
arXiv:1703.04232.
Rintanen, J. 2015. Discretization of Temporal Models with
Application to Planning with SMT. In Bonet, B.; and
Koenig, S., eds., Proc. of AAAI, 3349–3355.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for
Numeric Planning via Subgoaling. In Kambhampati, S., ed.,
Proc. of IJCAI, 3228–3234.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In
Proc. of ECAI, 655–663.
Shin, J.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. Artificial Intelligence,
166(1-2): 194–253.
Vallati, M.; Magazzeni, D.; Schutter, B. D.; Chrpa, L.; and
McCluskey, T. L. 2016. Efficient Macroscopic Urban Traf-
fic Models for Reducing Congestion: A PDDL+ Planning
Approach. In Proc. of AAAI 2016, 3188–3194.

